SciPost Phys. Core 5, 014 (2022) ·
published 16 March 2022
|
· pdf
We study the phase diagram for a lattice model of a time-reversal-broken three-dimensional Weyl semimetal (WSM) in an orbital magnetic field $B$ with a flux of $p/q$ per unit cell ($0\le p \le q-1$), with minimal crystalline symmetry. We find several interesting phases: (i) WSM phases with $2q$, $4q$, $6q$, and $8q$ Weyl nodes and corresponding surface Fermi arcs, (ii) a layered Chern insulating (LCI) phase, gapped in the bulk, but with gapless surface states, (iii) a phase in which some bulk bands are gapless with Weyl nodes, coexisting with others that are gapped but topologically nontrivial, adiabatically connected to an LCI phase, (iv) a new gapped trivially insulating phase (I$'$) with (non-topological) counter-propagating surface states, which could be gapped out in the absence of crystal symmetries. Importantly, we are able to obtain the phase boundaries analytically for all $p,q$. Analyzing the gaps for $p=1$ and very large $q$ enables us to smoothly take the zero-field limit, even though the phase diagrams look ostensibly very different for $q=1, B=0$, and $q\to\infty, B\to 0$.