SciPost Phys. Core 7, 017 (2024) ·
published 5 April 2024
|
· pdf
We study the thermalization of the transverse field Ising chain with a power law decaying interaction $\sim 1/r^{\alpha}$ following a global quantum quench of the transverse field in two different dynamical regimes. The thermalization behavior is quantified by comparing the full probability distribution function (PDF) of the evolving states with the corresponding thermal state given by the canonical Gibbs ensemble (CGE). To this end, we used the matrix product state (MPS)-based Time Dependent Variational Principle (TDVP) algorithm to simulate both real time evolution following a global quantum quench and the finite temperature density operator. We observe that thermalization is strongly suppressed in the region with strong confinement for all interaction strengths $\alpha$, whereas thermalization occurs in the region with weak confinement.
SciPost Phys. 12, 126 (2022) ·
published 11 April 2022
|
· pdf
We study the relaxation of the local ferromagnetic order in the transverse field quantum Ising chain with power-law decaying interactions $1/r^{\alpha}$. We prepare the system in the GHZ state and study the time evolution of the probability distribution function (PDF) of the order parameter within a block of $l$ when quenching the transverse field. The model is known to support long range order at finite temperature for $\alpha \leq 2.0$ . In this regime, quasi-localized topological magnetic defects are expected to strongly affect the equilibration of the full probability distribution. We highlight different dynamical regimes where gaussification mechanism may be slowed down by confinement and eventually breaks. We further study the PDF dynamics induced by changing the effective dimensionality of the system; we mimic this by quenching the range of the interactions. As a matter of fact, the behavior of the system crucially depends on the value of $\alpha$ governing the unitary evolution.