Lorenzo Küchler, Geoffrey Compère, Leanne Durkan, Adam Pound
SciPost Phys. 17, 056 (2024) ·
published 16 August 2024
|
· pdf
Compact binaries with asymmetric mass ratios are key expected sources for next-generation gravitational wave detectors. Gravitational self-force theory has been successful in producing post-adiabatic waveforms that describe the quasi-circular inspiral around a non-spinning black hole with sub-radian accuracy, in remarkable agreement with numerical relativity simulations. Current inspiral models, however, break down at the innermost stable circular orbit, missing part of the waveform as the secondary body transitions to a plunge into the black hole. In this work we derive the transition-to-plunge expansion within a multiscale framework and asymptotically match its early-time behaviour with the late inspiral. Our multiscale formulation facilitates rapid generation of waveforms: we build second post-leading transition-to-plunge waveforms, named 2PLT waveforms. Although our numerical results are limited to low perturbative orders, our framework contains the analytic tools for building higher-order waveforms consistent with post-adiabatic inspirals, once all the necessary numerical self-force data becomes available. We validate our framework by comparing against numerical relativity simulations, surrogate models and the effective one-body approach.
SciPost Phys. 13, 043 (2022) ·
published 31 August 2022
|
· pdf
In the small mass ratio expansion and on the equatorial plane, the two-body problem for point particles in general relativity admits a quasi-circular inspiral motion followed by a transition-to-plunge motion. We first derive the equations governing the quasi-circular inspiral in the Kerr background at adiabatic, post-adiabatic and post-post-adiabatic orders in the slow-timescale expansion in terms of the self-force and we highlight the structure of the equations of motion at higher subleading orders. We derive in parallel the equations governing the transition-to-plunge motion to any subleading order, and demonstrate that they are governed by sourced linearized Painlev\'e transcendental equations of the first kind. The first ten perturbative orders do not require any further developments in self-force theory, as they are determined by the second-order self-force. We propose a scheme that matches the slow-timescale expansion of the inspiral with the transition-to-plunge motion to all perturbative orders in the overlapping region exterior to the last stable orbit where both expansions are valid. We explicitly verify the validity of the matching conditions for a large set of coefficients involved, on the one hand, in the adiabatic or post-adiabatic inspiral and, on the other hand, in the leading, subleading or higher subleading transition-to-plunge motion. This result is instrumental for deriving gravitational waveforms within the self-force formalism beyond the innermost stable circular orbit.
Mr Küchler: "We would like to thank the ref..."
in Submissions | report on Asymptotically matched quasi-circular inspiral and transition-to-plunge in the small mass ratio expansion