Olivia Pulci, Paola Gori, Davide Grassano, Marco D'Alessandro, Friedhelm Bechstedt
SciPost Phys. 15, 025 (2023) ·
published 24 July 2023
|
· pdf
Using a variational approach, the binding energies $E_b$ of the lowest bound excitons in Xenes under varying electric field are investigated. The internal exciton motion is described both by Dirac electron dispersion and in effective-mass approximation, while the screened electron-hole attraction is modeled by a Rytova-Keldysh potential with a 2D electronic polarizability $\alpha_{2D}$. The most important parameters as spin-orbit-induced gap $E_g$, Fermi velocity $v_F$ and $\alpha_{2D}$ are taken from ab initio density functional theory calculations. In addition, $\alpha_{2D}$ is approximated in two different ways. The relation of $E_b$ and $E_g$ is ruled by the screening. The existence of an excitonic insulator phase with $E_b>E_g$ sensitively depends on the chosen $\alpha_{2D}$. The values of $E_g$ and $\alpha_{2D}$ are strongly modified by a vertical external electric bias $U$, which defines a transition from the topological into a trivial insulator at $U=E_g/2$, with the exception of plumbene. Within the Dirac approximation, but also within the effective mass description of the kinetic energy, the treatment of screening dominates the appearance or non-appearance of an excitonic insulator phase. Gating does not change the results: the prediction done at zero electric field is confirmed when a vertical electric field is applied. Finally, Many-Body perturbation theory approaches based on the Green's function method, applied to stanene, confirm the absence of an excitonic insulator phase, thus validating our results obtained by ab initio modeling of $\alpha_{2D}$.
SciPost Phys. 12, 193 (2022) ·
published 13 June 2022
|
· pdf
In this paper we present an ab initio real-time analysis of free polarization decay and photon echo in extended systems. As a prototype material, we study bulk GaAs driven by ultra-short laser pulses of 10 fs (energy spread of 0.4 eV), with frequency tuned in the continuum of the optical spectrum. We compute the electronic polarization P(t), and define a computational procedure to extract the echo signal in the dipole approximation. Results are obtained in both the low and high field regime, and compared with a two-levels system (TLS) model, with parameters extracted from the ab initio simulations. ab initio results are in optimal agreement with the TLS in the low-field case, whereas some differences are observed in the high-field regime where the multi-band nature of GaAs becomes relevant. In the high field regime we compute the pulse area, and look for fluences with pulse area close to {\pi}. We highlight that such fluences are well below the damage threshold of GaAs. However a unique value of the area cannot be defined, due to the strong dependence of the transition dipoles in the energy window excited by the laser pulse.
Dr D'Alessandro: "**The referee writes:** _The ..."
in Submissions | report on Transitions in Xenes between excitonic, topological and trivial insulator phases: influence of screening, band dispersion and external electric field