Marten Reehorst, Maria Refinetti, Alessandro Vichi
SciPost Phys. 14, 068 (2023) ·
published 12 April 2023
|
· pdf
We use numerical bootstrap techniques to study correlation functions of traceless symmetric tensors of $O(N)$ with two indices $t_{ij}$. We obtain upper bounds on operator dimensions for all the relevant representations and several values of $N$. We discover several families of kinks, which do not correspond to any known model and we discuss possible candidates. We then specialize to the case $N=4$, which has been conjectured to describe a phase transition in the antiferromagnetic real projective model $ARP^{3}$. Lattice simulations provide strong evidence for the existence of a second order phase transition, while an effective field theory approach does not predict any fixed point. We identify a set of assumptions that constrain operator dimensions to a closed region overlapping with the lattice prediction. The region is still present after pushing the numerics in the single correlator case or when considering a mixed system involving $t$ and the lowest dimension scalar singlet.
Marten Reehorst, Slava Rychkov, David Simmons-Duffin, Benoit Sirois, Ning Su, Balt van Rees
SciPost Phys. 11, 072 (2021) ·
published 28 September 2021
|
· pdf
Current numerical conformal bootstrap techniques carve out islands in theory space by repeatedly checking whether points are allowed or excluded. We propose a new method for searching theory space that replaces the binary information “allowed”/“excluded” with a continuous “navigator” function that is negative in the allowed region and positive in the excluded region. Such a navigator function allows one to efficiently explore high-dimensional parameter spaces and smoothly sail towards any islands they may contain. The specific functions we introduce have several attractive features: they are well-defined in large regions of parameter space, can be computed with standard methods, and evaluation of their gradient is immediate due to an SDP gradient formula that we provide. The latter property allows for the use of efficient quasi-Newton optimization methods, which we illustrate by navigating towards the 3d Ising island.
Submissions
Submissions for which this Contributor is identified as an author: