SciPost Phys. Lect. Notes 70 (2023) ·
published 12 June 2023
|
· pdf
These lecture notes from the 2019 Les Houches Summer School on "Quantum Information Machines" are intended to provide an introduction to classical and quantum error correction with bits and qubits, and with continuous variable systems (harmonic oscillators). The focus on the latter will be on practical examples that can be realized today or in the near future with a modular architecture based on superconducting electrical circuits and microwave photons. The goal and vision is "hardware-efficient" quantum error correction that does not require exponentially large hardware overhead in order to achieve practical and useful levels of fault tolerance and circuit depth.
SciPost Phys. 13, 107 (2022) ·
published 14 November 2022
|
· pdf
Particle loss is the ultimate challenge for preparation of strongly correlated many-body states of photons. An established way to overcome the loss is to employ a stabilization setup that autonomously injects new photons in place of the lost ones. However, as we show, the effectiveness of such a stabilization setup is compromised for fractional quantum Hall states. There, a hole formed by a lost photon can separate into several remote quasiholes none of which can be refilled by injecting a photon locally. By deriving an exact expression for the steady-state density matrix, we demonstrate that isolated quasiholes proliferate in the steady state which damages the quality of the state preparation. The motion of quasiholes leading to their separation is allowed by a repeated process in which a photon is first lost and then quickly refilled in the vicinity of the quasihole. We develop the theory of this dissipative quasihole dynamics and show that it has diffusive character. Our results demonstrate that fractionalization might present an obstacle for both creation and stabilization of strongly-correlated states with photons.