SciPost Phys. 17, 054 (2024) ·
published 15 August 2024
|
· pdf
A formalism based on the fermionic functional-renormalization-group approach to interacting electron models defined on a lattice is presented. One-loop flow equations for the coupling constants and susceptibilities in the particle-particle and particle-hole channels are derived in weak-coupling conditions. It is shown that lattice effects manifest themselves through the curvature of the spectrum and the dependence of the coupling constants on momenta. This method is then applied to the one-dimensional extended Hubbard model; we thoroughly discuss the evolution of the phase diagram, and in particular the fate of the bond-centered charge-density-wave phase, as the system is doped away from half-filling. Our findings are compared to the predictions of the field-theory continuum limit and available numerical results.
SciPost Phys. 12, 110 (2022) ·
published 28 March 2022
|
· pdf
Bosonization allows one to describe the low-energy physics of one-dimensional quantum fluids within a bosonic effective field theory formulated in terms of two fields: the "density" field $\varphi$ and its conjugate partner, the phase $\vartheta$ of the superfluid order parameter. We discuss the implementation of the nonperturbative functional renormalization group in this formalism, considering a Luttinger liquid in a periodic potential as an example. We show that in order for $\vartheta$ and $\varphi$ to remain conjugate variables at all energy scales, one must dynamically redefine the field $\vartheta$ along the renormalization-group flow. We derive explicit flow equations using a derivative expansion of the scale-dependent effective action to second order and show that they reproduce the flow equations of the sine-Gordon model (obtained by integrating out the field $\vartheta$ from the outset) derived within the same approximation. Only with the scale-dependent (flowing) reparametrization of the phase field $\vartheta$ do we obtain the standard phenomenology of the Luttinger liquid (when the periodic potential is sufficiently weak so as to avoid the Mott-insulating phase) characterized by two low-energy parameters, the velocity of the sound mode and the renormalized Luttinger parameter.