SciPost Phys. 13, 015 (2022) ·
published 8 August 2022
|
· pdf
Floquet phases of matter have attracted great attention due to their dynamical and topological nature that are unique to nonequilibrium settings. In this work, we introduce a generic way of taking any integer qth-root of the evolution operator U that describes Floquet topological matter. We further apply our qth-rooting procedure to obtain 2nth- and 3nth-root first- and second-order non-Hermitian Floquet topological insulators (FTIs). There, we explicitly demonstrate the presence of multiple edge and corner modes at fractional quasienergies ±(0, 1,...2^n)π/2^n and ±(0, 1,..., 3^n)π/3^n, whose numbers are highly controllable and capturable by the topological invariants of their parent systems. Notably, we observe non-Hermiticity induced fractional-quasienergy corner modes and the coexistence of non-Hermitian skin effect with fractional-quasienergy edge states. Our findings thus establish a framework of constructing an intriguing class of topological matter in Floquet open systems.