SciPost Phys. 15, 041 (2023) ·
published 1 August 2023
|
· pdf
Nuclei with equal number of baryons but varying proton number (isobars) have many commonalities, but differ in both electric charge and nuclear structure. Relativistic collisions of such isobars provide unique opportunities to study the variation of the magnetic field, provided the nuclear structure is well understood. In this work we simulate collisions using several state-of-the-art parametrizations of the $^{96}_{40}$Zr and $^{96}_{44}$Ru isobars and show that a comparison with the exciting STAR measurement [arXiv:2109.00131] of ultrarelativistic collisions can uniquely identify the structure of both isobars. This not only provides an urgently needed understanding of the structure of the Zirconium and Ruthenium isobars, but also paves the way for more detailed studies of nuclear structure using relativistic heavy ion collisions.
Christian Ecker, Johanna Erdmenger, Wilke van der Schee
SciPost Phys. 11, 047 (2021) ·
published 1 September 2021
|
· pdf
We present the first holographic simulations of non-equilibrium steady state formation in strongly coupled $\mathcal{N}=4$ SYM theory in 3+1 dimensions. We initially join together two thermal baths at different temperatures and chemical potentials and compare the subsequent evolution of the combined system to analytic solutions of the corresponding Riemann problem and to numeric solutions of ideal and viscous hydrodynamics. The time evolution of the energy density that we obtain holographically is consistent with the combination of a shock and a rarefaction wave: A shock wave moves towards the cold bath, and a smooth broadening wave towards the hot bath. Between the two waves emerges a steady state with constant temperature and flow velocity, both of which are accurately described by a shock+rarefaction wave solution of the Riemann problem. In the steady state region, a smooth crossover develops between two regions of different charge density. This is reminiscent of a contact discontinuity in the Riemann problem. We also obtain results for the entanglement entropy of regions crossed by shock and rarefaction waves and find both of them to closely follow the evolution of the energy density.
Christian Ecker, Daniel Grumiller, Wilke van der Schee, Shahin Sheikh-Jabbari, Philipp Stanzer
SciPost Phys. 6, 036 (2019) ·
published 25 March 2019
|
· pdf
We consider the Quantum Null Energy Condition (QNEC) for holographic conformal field theories in two spacetime dimensions (CFT$_2$). We show that QNEC saturates for all states dual to vacuum solutions of AdS$_3$ Einstein gravity, including systems that are far from thermal equilibrium. If the Ryu-Takayanagi surface encounters bulk matter QNEC does not need to be saturated, whereby we give both analytical and numerical examples. In particular, for CFT$_2$ with a global quench dual to AdS$_3$-Vaidya geometries we find a curious half-saturation of QNEC for large entangling regions. We also address order one corrections from quantum backreactions of a scalar field in AdS$_3$ dual to a primary operator of dimension $h$ in a large central charge expansion and explicitly compute both, the backreacted Ryu--Takayanagi surface part and the bulk entanglement contribution to EE and QNEC. At leading order for small entangling regions the contribution from bulk EE exactly cancels the contribution from the back-reacted Ryu-Takayanagi surface, but at higher orders in the size of the region the contributions are almost equal while QNEC is not saturated. For a half-space entangling region we find that QNEC is gapped by $h/4$ in the large $h$ expansion.
Dr van der Schee: "We wish to thank the referee f..."
in Submissions | report on Inferring nuclear structure from heavy isobar collisions using Trajectum