Eduardo Gonzalez Lazo, Markus Heyl, Marcello Dalmonte, Adriano Angelone
SciPost Phys. 11, 076 (2021) ·
published 13 October 2021
|
· pdf
We study the phase diagram and critical properties of quantum Ising chains with long-range ferromagnetic interactions decaying in a power-law fashion with exponent $\alpha$, in regimes of direct interest for current trapped ion experiments. Using large-scale path integral Monte Carlo simulations, we investigate both the ground-state and the nonzero-temperature regimes. We identify the phase boundary of the ferromagnetic phase and obtain accurate estimates for the ferromagnetic-paramagnetic transition temperatures. We further determine the critical exponents of the respective transitions. Our results are in agreement with existing predictions for interaction exponents $\alpha > 1$ up to small deviations in some critical exponents. We also address the elusive regime $\alpha < 1$, where we find that the universality class of both the ground-state and nonzero-temperature transition is consistent with the mean-field limit at $\alpha = 0$. Our work not only contributes to the understanding of the equilibrium properties of long-range interacting quantum Ising models, but can also be important for addressing fundamental dynamical aspects, such as issues concerning the open question of thermalization in such models.
SciPost Phys. 4, 013 (2018) ·
published 28 February 2018
|
· pdf
The efficient representation of quantum many-body states with classical resources is a key challenge in quantum many-body theory. In this work we analytically construct classical networks for the description of the quantum dynamics in transverse-field Ising models that can be solved efficiently using Monte Carlo techniques. Our perturbative construction encodes time-evolved quantum states of spin-1/2 systems in a network of classical spins with local couplings and can be directly generalized to other spin systems and higher spins. Using this construction we compute the transient dynamics in one, two, and three dimensions including local observables, entanglement production, and Loschmidt amplitudes using Monte Carlo algorithms and demonstrate the accuracy of this approach by comparisons to exact results. We include a mapping to equivalent artificial neural networks, which were recently introduced to provide a universal structure for classical network wave functions.