SciPost Phys. Core 7, 082 (2024) ·
published 11 December 2024
|
· pdf
Based on the recent work [J. Stat. Phys. 190, 193 (2023), J. Stat. Phys. 190, 181 (2023)], we formulate the first law and the second law of stochastic thermodynamics in the framework of general relativity. These laws are established for a charged Brownian particle moving in a heat reservoir and subjecting to an external electromagnetic field in generic stationary spacetime background, and in order to maintain general covariance, they are presented respectively in terms of the divergences of the energy current and the entropy density current. The stability of the equilibrium state is also analyzed.
SciPost Phys. 15, 148 (2023) ·
published 10 October 2023
|
· pdf
We study the many-body physics in twisted bilayer graphene coupled to periodic driving of a circularly polarized light when electron-electron interactions are taken into account. In the limit of high driving frequency $\Omega$, we use Floquet theory to formulate the system by an effective static Hamiltonian truncated to the order of $\Omega^{-2}$, which consists of a single-electron part and the screened Coulomb interaction. We numerically simulate this effective Hamiltonian by extensive exact diagonalization in the parameter space spanned by the twist angle and the driving strength. Remarkably, in a wide region of the parameter space, we identify Floquet fractional Chern insulator states in the partially filled Floquet valence bands. We characterize these topologically ordered states by ground-state degeneracy, spectral flow, and entanglement spectrum. In regions of the parameter space where fractional Chern insulator states are absent, we find topologically trivial charge density waves and band-dispersion-induced Fermi liquids which strongly compete with fractional Chern insulator states.