Andreas M. Läuchli, Loïc Herviou, Patrick H. Wilhelm, Slava Rychkov
SciPost Phys. 19, 076 (2025) ·
published 26 September 2025
|
· pdf
Numerical studies of phase transitions in statistical and quantum lattice models provide crucial insights into the corresponding Conformal Field Theories (CFTs). In higher dimensions, comparing finite-volume numerical results to infinite-volume CFT data is facilitated by choosing the sphere $S^{d-1}$ as the spatial manifold. Recently, the fuzzy sphere regulator [Zhu et al, Phys. Rev. X 13, 021009 (2023)] has enabled such studies with exact rotational invariance, yielding impressive agreement with known 3D Ising CFT predictions, as well as new results. However, systematic improvements and a deeper understanding of finite-size corrections remain essential. In this work, we revisit the fuzzy sphere regulator, focusing on the original Ising model, with two main goals. First, we assess the robustness of this approach using Conformal Perturbation Theory (CPT), to which we provide a detailed guidebook. We demonstrate how CPT provides a unified framework for determining the critical point, the speed of light, and residual deviations from CFT predictions. Applying this framework, we study finite-size corrections and clarify the role of tuning the model in minimizing these effects. Second, we develop a novel method for extracting Operator Product Expansion (OPE) coefficients from fuzzy sphere data. This method leverages the sensitivity of energy levels to detuning from criticality, providing new insights into level mixing and avoided crossings in finite systems. Our work also includes validation of CPT in a 1+1D Ising model away from the integrable limit.
Patrick H. Wilhelm, Thomas C. Lang, Mathias S. Scheurer, Andreas M. Läuchli
SciPost Phys. 14, 040 (2023) ·
published 20 March 2023
|
· pdf
Twisted double- and mono-bilayer graphene are graphene-based moiré materials hosting strongly correlated fermions in a gate-tunable conduction band with a topologically non-trivial character. Using unbiased exact diagonalization complemented by unrestricted Hartree-Fock calculations, we find that the strong electron-electron interactions lead to a non-coplanar magnetic state, which has the same symmetries as the tetrahedral antiferromagnet on the triangular lattice and can be thought of as a skyrmion lattice commensurate with the moiré scale, competing with a set of ferromagnetic, topological charge density waves featuring an approximate emergent O(3) symmetry, "rotating" the different charge density wave states into each other. Direct comparison with exact diagonalization reveals that the ordered phases are accurately described within the unrestricted Hartree-Fock approximation. Exhibiting a finite charge gap and Chern number $|C|=1$, the formation of charge density wave order which is intimately connected to a skyrmion lattice phase is consistent with recent experiments on these systems.
Mr Wilhelm: "We thank the referee for the h..."
in Submissions | report on Non-coplanar magnetism, topological density wave order and emergent symmetry at half-integer filling of moiré Chern bands