SciPost Phys. 14, 129 (2023) ·
published 25 May 2023
|
· pdf
Numerical simulation of lattice gauge theories is an indispensable tool in high energy physics, and their quantum simulation is expected to become a major application of quantum computers in the future. In this work, for an Abelian lattice gauge theory in $d$ spacetime dimensions, we define an entangled resource state (generalized cluster state) that reflects the spacetime structure of the gauge theory. We show that sequential single-qubit measurements with the bases adapted according to the former measurement outcomes induce a deterministic Hamiltonian quantum simulation of the gauge theory on the boundary. Our construction includes the $(2+1)$-dimensional Abelian lattice gauge theory simulated on three-dimensional cluster state as an example, and generalizes to the simulation of Wegner's lattice models $M_{(d,n)}$ that involve higher-form Abelian gauge fields. We demonstrate that the generalized cluster state has a symmetry-protected topological order with respect to generalized global symmetries that are related to the symmetries of the simulated gauge theories on the boundary.Our procedure can be generalized to the simulation of Kitaev's Majorana chain on a fermionic resource state. We also study the imaginary-time quantum simulation with two-qubit measurements and post-selections, and a classical-quantum correspondence, where the statistical partition function of the model $M_{(d,n)}$ is written as the overlap between the product of two-qubit measurement bases and the wave function of the generalized cluster state.
SciPost Phys. Core 6, 035 (2023) ·
published 26 April 2023
|
· pdf
We construct a discrete subset of Narain CFTs from quantum stabilizer codes with qudit (including qubit) systems whose dimension is a prime number. Our construction exploits three important relations. The first relation is between qudit stabilizer codes and classical codes. The second is between classical codes and Lorentzian lattices. The third is between Lorentzian lattices and Narain CFTs. In particular, we study qudit Calderbank-Shor-Steane (CSS) codes as a special class of qudit stabilizer codes and the ensembles of the Narain code CFTs constructed from CSS codes. We obtain exact results for the averaged partition functions over the ensembles and discuss their implications for holographic duality.
Submissions
Submissions for which this Contributor is identified as an author: