SciPost Phys. 19, 081 (2025) ·
published 30 September 2025
|
· pdf
We analyze thermal correlators in the Sachdev-Ye-Kitaev model away from the maximally chaotic limit. Despite the absence of a weakly curved black hole dual, the two point function decomposes into a sum over a discrete set of quasinormal modes. To compute the spectrum of modes, we analytically solve the Schwinger-Dyson equations to a high order in perturbation theory, and then numerically fit to a sum of exponentials using a technique analogous to the double cone construction. The resulting spectrum has a tree-like structure which is reminiscent of AdS black holes with curvature singularities. We present a simple toy model of stringy black holes that qualitatively reproduces some aspects of this structure.
Matthew Dodelson, Alba Grassi, Cristoforo Iossa, Daniel Panea Lichtig, Alexander Zhiboedov
SciPost Phys. 14, 116 (2023) ·
published 16 May 2023
|
· pdf
We present an exact formula for the thermal scalar two-point function in four-dimensional holographic conformal field theories. The problem of finding it reduces to the analysis of the wave equation on the AdS-Schwarzschild background. The two-point function is computed from the connection coefficients of the Heun equation, which can be expressed in terms of the Nekrasov-Shatashvili partition function of an $SU(2)$ supersymmetric gauge theory with four fundamental hypermultiplets. The result is amenable to numerical evaluation upon truncating the number of instantons in the convergent expansion of the partition function. We also examine it analytically in various limits. At large spin the instanton expansion of the thermal two-point function directly maps to the light-cone bootstrap analysis of the heavy-light four-point function. Using this connection, we compute the OPE data of heavy-light double-twist operators. We compare our prediction to the perturbative results available in the literature and find perfect agreement.
Dr Dodelson: "Thank you for the helpful comm..."
in Submissions | report on Ringdown in the SYK model