SciPost Phys. 17, 104 (2024) ·
published 4 October 2024
|
· pdf
Lattice non-invertible symmetries have rich fusion structures and play important roles in understanding various exotic topological phases. In this paper, we explore methods to generate new lattice non-invertible transformations/symmetries from a given non-invertible seed transformation/symmetry. The new lattice non-invertible symmetry is constructed by composing the seed transformations on different sites or sandwiching a unitary transformation between the transformations on the same sites. In addition to known non-invertible symmetries with fusion algebras of Tambara-Yamagami $\mathbb Z_NĂ—\mathbb Z_N$ type, we obtain a new non-invertible symmetry in models with $\mathbb Z_N$ dipole symmetries. We name the latter the dipole Kramers-Wannier symmetry because it arises from gauging the dipole symmetry. We further study the dipole Kramers-Wannier symmetry in depth, including its topological defect, its anomaly and its associated generalized Kennedy-Tasaki transformation.
SciPost Phys. 15, 155 (2023) ·
published 12 October 2023
|
· pdf
We explore non-invertible symmetries in two-dimensional lattice models with subsystem $\mathbb Z_2$ symmetry. We introduce a subsystem $\mathbb Z_2$-gauging procedure, called the subsystem Kramers-Wannier transformation, which generalizes the ordinary Kramers-Wannier transformation. The corresponding duality operators and defects are constructed by gaugings on the whole or half of the Hilbert space. By gauging twice, we derive fusion rules of duality operators and defects, which enriches ordinary Ising fusion rules with subsystem features. Subsystem Kramers-Wannier duality defects are mobile in both spatial directions, unlike the defects of invertible subsystem symmetries. We finally comment on the anomaly of the subsystem Kramers-Wannier duality symmetry, and discuss its subtleties.