Martina Frau, Poetri Sonya Tarabunga, Mario Collura, Emanuele Tirrito, Marcello Dalmonte
SciPost Phys. 18, 165 (2025) ·
published 22 May 2025
|
· pdf
Understanding how entanglement can be reduced through simple operations is crucial for both classical and quantum algorithms. We investigate the entanglement properties of lattice models hosting conformal field theories cooled via local Clifford operations, a procedure we refer to as stabilizer disentangling. We uncover two distinct regimes: a constant gain regime, where disentangling is volume-independent, and a log-gain regime, where disentanglement increases with volume, characterized by a reduced effective central charge. In both cases, disentangling efficiency correlates with the target state magic, with larger magic leading to more effective cooling. The dichotomy between the two cases stems from mutual stabilizer Rényi entropy, which influences the entanglement cooling process. We provide an analytical understanding of such effect in the context of cluster Ising models, that feature disentangling global Clifford operations. Our findings indicate that matrix product states possess subclasses based on the relationship between entanglement and magic, and clarifying the potential of new classes of variational states embedding Clifford dynamics within matrix product states.
Emanuele Tirrito, Alessandro Santini, Rosario Fazio, Mario Collura
SciPost Phys. 15, 096 (2023) ·
published 14 September 2023
|
· pdf
Non-equilibrium dynamics of many-body quantum systems under the effect of measurement protocols is attracting an increasing amount of attention. It has been recently revealed that measurements may induce different non-equilibrium regimes and an abrupt change in the scaling-law of the bipartite entanglement entropy. However, our understanding of how these regimes appear{, how they affect the statistics of local quantities and}, finally whether they survive in the thermodynamic limit, is much less established. Here we investigate measurement-induced phase transitions in the Quantum Ising chain coupled to a monitoring environment. In particular we show that local projective measurements induce a quantitative modification of the out-of-equilibrium probability distribution function of the local magnetization. Starting from a GHZ state, the relaxation of the paramagnetic and the ferromagnetic order is analysed. In particular we describe how the probability distributions associated to them show different behaviour depending on the measurement rate.
Submissions
Submissions for which this Contributor is identified as an author: