Clifford Cheung, Aurélien Dersy, Matthew D. Schwartz
SciPost Phys. 18, 040 (2025) ·
published 3 February 2025
|
· pdf
The simplification and reorganization of complex expressions lies at the core of scientific progress, particularly in theoretical high-energy physics. This work explores the application of machine learning to a particular facet of this challenge: the task of simplifying scattering amplitudes expressed in terms of spinor-helicity variables. We demonstrate that an encoder-decoder transformer architecture achieves impressive simplification capabilities for expressions composed of handfuls of terms. Lengthier expressions are implemented in an additional embedding network, trained using contrastive learning, which isolates subexpressions that are more likely to simplify. The resulting framework is capable of reducing expressions with hundreds of terms—a regular occurrence in quantum field theory calculations—to vastly simpler equivalent expressions. Starting from lengthy input expressions, our networks can generate the Parke-Taylor formula for five-point gluon scattering, as well as new compact expressions for five-point amplitudes involving scalars and gravitons. An interactive demonstration can be found at https://spinorhelicity.streamlit.app.
Aurélien Dersy, Andrei Khmelnitsky, Riccardo Rattazzi
SciPost Phys. 17, 019 (2024) ·
published 24 July 2024
|
· pdf
We consider the field theory that defines a perfect incompressible 2D fluid. One distinctive property of this system is that the quadratic action for fluctuations around the ground state features neither mass nor gradient term. Quantum mechanically this poses a technical puzzle, as it implies the Hilbert space of fluctuations is not a Fock space and perturbation theory is useless. As we show, the proper treatment must instead use that the configuration space is the area preserving Lie group ${S\mathrm{Diff}}$. Quantum mechanics on Lie groups is basically a group theory problem, but a harder one in our case, since ${S\mathrm{Diff}}$ is infinite dimensional. Focusing on a fluid on the 2-torus $T^2$, we could however exploit the well known result ${S\mathrm{Diff}}(T^2)\sim SU(N)$ for $N\to ∞$, reducing for finite $N$ to a tractable case. $SU(N)$ offers a UV-regulation, but physical quantities can be robustly defined in the continuum limit $N\to∞$. The main result of our study is the existence of ungapped localized excitations, the vortons, satisfying a dispersion $\omega \propto k^2$ and carrying a vorticity dipole. The vortons are also characterized by very distinctive derivative interactions whose structure is fixed by symmetry. Departing from the original incompressible fluid, we constructed a class of field theories where the vortons appear, right from the start, as the quanta of either bosonic or fermionic local fields.
Mr Dersy: "We thank the referee for their..."
in Submissions | report on Learning the Simplicity of Scattering Amplitudes