Heidar Moradi, Ömer M. Aksoy, Jens H. Bardarson, Apoorv Tiwari
SciPost Phys. 18, 097 (2025) ·
published 17 March 2025
|
· pdf
We investigate the gauging of higher-form finite Abelian symmetries and their sub-groups in quantum spin models in spatial dimensions $d=2$ and 3. Doing so, we naturally uncover gauged models with dual higher-group symmetries and potential mixed ‘t Hooft anomalies. We demonstrate that the mixed anomalies manifest as the symmetry fractionalization of higher-form symmetries participating in the mixed anomaly. Gauging is realized as an isomorphism or duality between the bond algebras that generate the space of quantum spin models with the dual generalized symmetry structures. We explore the mapping of gapped phases under such gauging related dualities for 0-form and 1-form symmetries in spatial dimension $d=2$ and 3. In $d=2$, these include several non-trivial dualities between short-range entangled gapped phases with 0-form symmetries and 0-form symmetry enriched Higgs and (twisted) deconfined phases of the gauged theory with possible symmetry fractionalizations. Such dualities also imply strong constraints on several unconventional, i.e., deconfined or topological transitions. In $d=3$, among others, we find, dualities between topological orders via gauging of 1-form symmetries. Hamiltonians self-dual under gauging of 1-form symmetries host emergent non-invertible symmetries, realizing higher-categorical generalizations of the Tambara-Yamagami fusion category.
SciPost Phys. Core 6, 066 (2023) ·
published 16 October 2023
|
· pdf
We outline a holographic framework that attempts to unify Landau and beyond-Landau paradigms of quantum phases and phase transitions. Leveraging a modern understanding of symmetries as topological defects/operators, the framework uses a topological order to organize the space of quantum systems with a global symmetry in one lower dimension. The global symmetry naturally serves as an input for the topological order. In particular, we holographically construct a String Operator Algebra (SOA) which is the building block of symmetric quantum systems with a given symmetry G in one lower dimension. This exposes a vast web of dualities which act on the space of G-symmetric quantum systems. The SOA facilitates the classification of gapped phases as well as their corresponding order parameters and fundamental excitations, while dualities help to navigate and predict various corners of phase diagrams and analytically compute universality classes of phase transitions. A novelty of the approach is that it treats conventional Landau and unconventional topological phase transitions on an equal footing, thereby providing a holographic unification of these seemingly-disparate domains of understanding. We uncover a new feature of gapped phases and their multi-critical points, which we dub fusion structure, that encodes information about which phases and transitions can be dual to each other. Furthermore, we discover that self-dual systems typically posses emergent non-invertible, i.e., beyond group-like symmetries. We apply these ideas to $1+1d$ quantum spin chains with finite Abelian group symmetry, using topologically-ordered systems in $2+1d$. We predict the phase diagrams of various concrete spin models, and analytically compute the full conformal spectra of non-trivial quantum phase transitions, which we then verify numerically.