Andrea Antinucci, Christian Copetti, Sakura Schäfer-Nameki
SciPost Phys. 18, 114 (2025) ·
published 31 March 2025
|
· pdf
We study gapless phases in (3+1)d in the presence of 1-form and non-invertible duality symmetries. Using the Symmetry Topological Field Theory (SymTFT) approach, we classify the gapless symmetry-protected (gSPT) phases in these setups, with particular focus on intrinsically gSPTs (igSPTs). These are symmetry protected critical points which cannot be deformed to a trivially gapped phase without spontaneously breaking the symmetry. Although these are by now well-known in (1+1)d, we demonstrate their existence in (3+1)d gauge theories. Here, they have a clear physical interpretation in terms of an obstruction to confinement, even though the full 1-form symmetry does not suffer from 't Hooft anomalies. These igSPT phases provide a new way to realize 1-form symmetries in CFTs, that has no analog for gapped phases. The SymTFT approach allows for a direct generalization from invertible symmetries to non-invertible duality symmetries, for which we study gSPT and igSPT phases as well. We accompany these theoretical results with concrete physical examples realizing such phases and explain how obstruction to confinement is detected at the level of symmetric deformations.
Andrea Antinucci, Giovanni Galati, Giovanni Rizi, Marco Serone
SciPost Phys. 15, 125 (2023) ·
published 29 September 2023
|
· pdf
We study Ward identities and selection rules for local correlators in disordered theories where a 0-form global symmetry of a QFT is explicitly broken by a random coupling $h$ but it re-emerges after quenched average. We consider $h$ space-dependent or constant. In both cases we construct the symmetry operator implementing the group action, topological after average. In the first case, relevant in statistical systems with random impurities, such symmetries can be coupled to external backgrounds and can be gauged, like ordinary symmetries in QFTs. We also determine exotic selection rules arising when symmetries emerge after average in the IR, explaining the origin of LogCFTs from symmetry considerations. In the second case, relevant in AdS/CFT to describe the dual boundary theory of certain bulk gravitational theories, the charge operator is not purely codimension-1, it can be defined only on homologically trivial cycles and on connected spaces. Selection rules for average correlators exist, yet such symmetries cannot be coupled to background gauge fields in ordinary ways and cannot be gauged. When the space is disconnected, in each connected component charge violation occurs, as expected from Euclidean wormholes in the bulk theory. Our findings show the obstruction to interpret symmetries emergent after average as gauged in the bulk.