SciPost Phys. Core 7, 057 (2024) ·
published 22 August 2024
|
· pdf
Holographic space-time, a theory of quantum gravity that generalizes string theory and quantum field theory, predicts black holes in the early matter-dominated era of its models of inflation. Before these black holes can decay, there is a chance that enough of these particles merge to produce radiation visible today in the Cosmic Microwave background. To discover if this is the case, we perform a rudimentary computer simulation. We show that no problematic black holes are formed by mergers in the Holographic Space-time models of inflation. However, we conclude that tiny bound structures containing black holes remnants form in this theory unconditionally. Since black hole decay products are mostly massive standard model particles, and perhaps their superpartners, the fate of these structures is a complicated dynamical problem that requires further study. It suggests the possibility of primordial structures on the order of the horizon size at the beginning of the radiation dominated era. This is about $10^9 L_P$ in the current model.
SciPost Phys. 12, 015 (2022) ·
published 11 January 2022
|
· pdf
We complete an old argument that causal diamonds in the crunching region of the Lorentzian continuation of a Coleman-Deluccia instanton for transitions out of de Sitter space have finite area, and provide quantum models consistent with the principle of detailed balance, which can mimic the instanton transition probabilities for the cases where this diamond is larger or smaller than the causal patch of de Sitter space. We review arguments that potentials which do not have a positive energy theorem when the lowest de Sitter minimum is shifted to zero, may not correspond to real models of quantum gravity.