Andrea Antinucci, Christian Copetti, Sakura Schäfer-Nameki
SciPost Phys. 18, 114 (2025) ·
published 31 March 2025
|
· pdf
We study gapless phases in (3+1)d in the presence of 1-form and non-invertible duality symmetries. Using the Symmetry Topological Field Theory (SymTFT) approach, we classify the gapless symmetry-protected (gSPT) phases in these setups, with particular focus on intrinsically gSPTs (igSPTs). These are symmetry protected critical points which cannot be deformed to a trivially gapped phase without spontaneously breaking the symmetry. Although these are by now well-known in (1+1)d, we demonstrate their existence in (3+1)d gauge theories. Here, they have a clear physical interpretation in terms of an obstruction to confinement, even though the full 1-form symmetry does not suffer from 't Hooft anomalies. These igSPT phases provide a new way to realize 1-form symmetries in CFTs, that has no analog for gapped phases. The SymTFT approach allows for a direct generalization from invertible symmetries to non-invertible duality symmetries, for which we study gSPT and igSPT phases as well. We accompany these theoretical results with concrete physical examples realizing such phases and explain how obstruction to confinement is detected at the level of symmetric deformations.
Francesco Benini, Christian Copetti, Lorenzo Di Pietro
SciPost Phys. 14, 019 (2023) ·
published 14 February 2023
|
· pdf
We consider toy models of holography arising from 3d Chern-Simons theory. In this context a duality to an ensemble average over 2d CFTs has been recently proposed. We put forward an alternative approach in which, rather than summing over bulk geometries, one gauges a one-form global symmetry of the bulk theory. This accomplishes two tasks: it ensures that the bulk theory has no global symmetries, as expected for a theory of quantum gravity, and it makes the partition function on spacetimes with boundaries coincide with that of a modular-invariant 2d CFT on the boundary. In particular, on wormhole geometries one finds a factorized answer for the partition function. In the case of non-Abelian Chern-Simons theories, the relevant one-form symmetry is non-invertible, and its "gauging" corresponds to the condensation of a Lagrangian anyon.
Submissions
Submissions for which this Contributor is identified as an author: