SciPost Phys. 19, 029 (2025) ·
published 11 August 2025
|
· pdf
We provide a general analysis of the asymptotic behaviour of perturbative contributions to observables in arbitrary power-law FRW cosmologies, indistinctly the Bunch-Davies wavefunction of the universe and cosmological correlators. We consider a large class of scalar toy models, including conformally-coupled and massless scalars in arbitrary dimensions, that admits a first principle definition in terms of (generalised/weighted) cosmological polytopes. The perturbative contributions to an observable can be expressed as an integral of the canonical function associated to such polytopes and to site- and edge-weighted graphs. We show how the asymptotic behaviour of these integrals is governed by a special class of nestohedra living in the graph-weight space, both at tree and loop level. As the singularities of a cosmological process described by a graph can be associated to its subgraphs, we provide a realisation of the nestohedra as a sequential truncation of a top-dimensional simplex based on the underlying graph. This allows us to determine all the possible directions – both in the infra-red and in the ultra-violet –, where the integral can diverge as well as their degree of divergence. Both of them are associated to the facets of the nestohedra, which are identified by overlapping tubings of the graph: the specific tubing determines the divergent directions while the number of overlapping tubings its degree of divergence. This combinatorial formulation makes straightforward the application of sector decomposition for extracting the – both leading and subleading – divergences from the integral, as the sectors in which the integration domain can be tiled are identified by the collection of compatible facets of the nestohedra, with the latter that can be determined via the graph tubings. Finally, the leading divergence has a beautiful interpretation as a restriction of the canonical function of the relevant polytope onto a special hyperplane.
SciPost Phys. 18, 176 (2025) ·
published 4 June 2025
|
· pdf
Cosmological observables in perturbation theory turn out to be plagued with infrared divergences, which represents both a conceptual and computational challenge. In this paper we present a proof of concept for a systematic procedure to remove these divergences in a large class of scalar cosmological integrals and consistently define an infrared safe computable in perturbation theory. We provide diagrammatic rules which are based on the nestohedra underlying the asymptotic structure of such integrals.
SciPost Phys. 18, 105 (2025) ·
published 20 March 2025
|
· pdf
We provide a first principle definition of cosmological correlation functions for a large class of scalar toy models in arbitrary FRW cosmologies, in terms of novel geometries we name weighted cosmological polytopes. Each of these geometries encodes a universal rational integrand associated to a given Feynman graph. In this picture, all the possible ways of organising, and computing, cosmological correlators correspond to triangulations and subdivisions of the geometry, containing the in-in representation, the one in terms of wavefunction coefficients and many others. We also provide two novel contour integral representations, one connecting higher and lower loop correlators and the other one expressing any of them in terms of a building block. We study the boundary structure of these geometries allowing us to prove factorisation properties and Steinmann-like relations when single and sequential discontinuities are approached. We also show that correlators must satisfy novel vanishing conditions. As the weighted cosmological polytopes can be obtained as an orientation-changing operation onto a certain subdivision of the cosmological polytopes encoding the wavefunction of the Universe, this picture allows us to sharpen how the properties of cosmological correlators are inherited from the ones of the wavefunction. From a mathematical perspective, we also provide an in-depth characterisation of their adjoint surface.
Soner Albayrak, Paolo Benincasa, Carlos Duaso Pueyo
SciPost Phys. 16, 157 (2024) ·
published 20 June 2024
|
· pdf
Unitarity of time evolution is one of the basic principles constraining physical processes. Its consequences in the perturbative Bunch-Davies wavefunction in cosmology have been formulated in terms of the cosmological optical theorem. In this paper, we re-analyse perturbative unitarity for the Bunch-Davies wavefunction, focusing on: $i)$ the role of the $i\epsilon$-prescription and its compatibility with the requirement of unitarity; $ii)$ the origin of the different ``cutting rules''; $iii)$ the emergence of the flat-space optical theorem from the cosmological one. We take the combinatorial point of view of the cosmological polytopes, which provide a first-principle description for a large class of scalar graphs contributing to the wavefunctional. The requirement of the positivity of the geometry together with the preservation of its orientation determine the $i\epsilon$-prescription. In kinematic space it translates into giving a small negative imaginary part to all the energies, making the wavefunction coefficients well-defined for any value of their real part along the real axis. Unitarity is instead encoded into a non-convex part of the cosmological polytope, which we name \textit{optical polytope}. The cosmological optical theorem emerges as the equivalence between a specific polytope subdivision of the optical polytope and its triangulations, each of which provides different cutting rules. The flat-space optical theorem instead emerges from the non-convexity of the optical polytope. On the more mathematical side, we provide two definitions of this non-convex geometry, none of them based on the idea of the non-convex geometry as a union of convex ones.
SciPost Phys. 12, 192 (2022) ·
published 10 June 2022
|
· pdf
The way we organise perturbation theory is of fundamental importance both for computing the observables of relevance and for extracting fundamental physics out of them. If on one hand the different ways in which the perturbative observables can be written make manifest different features ({\it e.g.} symmetries as well as principles such as unitarity, causality and locality), on the other hand precisely demanding that some concrete features are manifest lead to different ways of organising perturbation theory. In the context of flat-space scattering amplitudes, a number of them are already known and exploited, while much less is known for cosmological observables. In the present work, we show how to systematically write down both the wavefunction of the universe and the flat-space scattering amplitudes, in such a way that they manifestly show physical poles only. We make use of the invariant definition of such observables in terms of {\it cosmological polytopes} and their {\it scattering facet}. In particular, we show that such representations correspond to triangulations of such objects through hyperplanes identified by the intersection of their facets outside of them. All possible triangulations of this type generate the different representations. This allows us to provide a general proof for the conjectured all-loop causal representation of scattering amplitudes. Importantly, all such representations can be viewed as making explicit a subset of compatible singularities, and our construction provides a way to extend Steinmann relations to higher codimension singularities for both the flat-space scattering amplitudes and the cosmological wavefunction.