SciPost Phys. 18, 027 (2025) ·
published 22 January 2025
|
· pdf
In this paper, we address the problem of Yang-Baxter integrability of doubled quantum circuit of qubits (spins 1/2) with open boundary conditions where the two circuit replicas are only coupled at the left or right boundary. We investigate the cases where the bulk is given by elementary six vertex unitary gates of either the free fermionic XX type or interacting XXZ type. By using the Sklyanin's construction of reflection algebra, we obtain the most general solutions of the boundary Yang-Baxter equation for such a setup. We use this solution to build, from the transfer matrix formalism, integrable circuits with two step discrete time Floquet (aka brickwork) dynamics. We prove that, only if the bulk is a free-model, the boundary matrices are in general non-factorizable, and for particular choice of free parameters yield non-trivial unitary dynamics with boundary interaction between the two chains. Then, we consider the limit of continuous time evolution and we give the interpretation of a restricted set of the boundary terms in the Lindbladian setting. Specifically, for a particular choice of free parameters, the solutions correspond to an open quantum system dynamics with the source terms representing injecting or removing particles from the boundary of the spin chain.
SciPost Phys. 15, 071 (2023) ·
published 28 August 2023
|
· pdf
In this paper we present a new integrable deformation of the Hubbard model. Our deformation gives rise to a range 3 interaction term in the Hamiltonian which does not preserve spin or particle number. This is the first non-trivial medium range deformation of the Hubbard model that is integrable. Our model can be mapped to a new integrable nearest-neighbour model via a duality transformation. The resulting nearest-neighbour model also breaks spin conservation. We compute the R-matrices for our models, and find that there is a very unusual dependence on the spectral parameters in terms of the elliptic amplitude.
Marius de Leeuw, Chiara Paletta, Anton Pribytok, Ana L. Retore, Paul Ryan
SciPost Phys. 11, 069 (2021) ·
published 27 September 2021
|
· pdf
In this paper we continue our classification of regular solutions of the Yang-Baxter equation using the method based on the spin chain boost operator developed in \cite{deLeeuw:2019zsi}. We provide details on how to find all non-difference form solutions and apply our method to spin chains with local Hilbert space of dimensions two, three and four. We classify all 16×16 solutions which exhibit su(2)+su(2) symmetry, which include the one-dimensional Hubbard model and the S-matrix of the AdS5 x S5 superstring sigma model. In all cases we find interesting novel solutions of the Yang-Baxter equation.