Diego Delmastro, Jaume Gomis, Po-Shen Hsin, Zohar Komargodski
SciPost Phys. 15, 079 (2023) ·
published 5 September 2023
|
· pdf
We study ordinary, zero-form symmetry $G$ and its anomalies in a system with a one-form symmetry $\Gamma$. In a theory with one-form symmetry, the action of $G$ on charged line operators is not completely determined, and additional data, a fractionalization class, needs to be specified. Distinct choices of a fractionalization class can result in different values for the anomalies of $G$ if the theory has an anomaly involving $\Gamma$. Therefore, the computation of the 't Hooft anomaly for an ordinary symmetry $G$ generally requires first discovering the one-form symmetry $\Gamma$ of the physical system. We show that the multiple values of the anomaly for $G$ can be realized by twisted gauge transformations, since twisted gauge transformations shift fractionalization classes. We illustrate these ideas in QCD theories in diverse dimensions. We successfully match the anomalies of time-reversal symmetries in $2+1d$ gauge theories, across the different fractionalization classes, with previous conjectures for the infrared phases of such strongly coupled theories, and also provide new checks of these proposals. We perform consistency checks of recent proposals about two-dimensional adjoint QCD and present new results about the anomaly of the axial $\mathbb{Z}_{2N}$ symmetry in $3+1d$ ${\cal N}=1$ super-Yang-Mills. Finally, we study fractionalization classes that lead to 2-group symmetry, both in QCD-like theories, and in $2+1d$ $\mathbb{Z}_2$ gauge theory.
SciPost Phys. 5, 007 (2018) ·
published 23 July 2018
|
· pdf
We study 2+1 dimensional gauge theories with a Chern-Simons term and a fermion in the adjoint representation. We apply general considerations of symmetries, anomalies, and renormalization group flows to determine the possible phases of the theory as a function of the gauge group, the Chern-Simons level $k$, and the fermion mass. We propose an inherently quantum mechanical phase of adjoint QCD with small enough $k$, where the infrared is described by a certain Topological Quantum Field Theory (TQFT). For a special choice of the mass, the theory has ${\cal N}=1$ supersymmetry. There this TQFT is accompanied by a massless Majorana fermion - a Goldstino signaling spontaneous supersymmetry breaking. Our analysis leads us to conjecture a number of new infrared fermion-fermion dualities involving $SU$, $SO$, and $Sp$ gauge theories. It also leads us to suggest a phase diagram of $SO/Sp$ gauge theories with a fermion in the traceless symmetric/antisymmetric tensor representation of the gauge group.
Prof. Gomis: "We would like to first thank t..."
in Submissions | submission on Phases Of Adjoint QCD$_3$ And Dualities by Jaume Gomis, Zohar Komargodski, Nathan Seiberg