Felix A. Pollock, Emanuel Gull, K. Modi, Guy Cohen
SciPost Phys. 13, 027 (2022) ·
published 18 August 2022
|
· pdf
We present a theory of modified reduced dynamics in the presence of counting fields. Reduced dynamics techniques are useful for describing open quantum systems at long emergent timescales when the memory timescales are short. However, they can be difficult to formulate for observables spanning the system and its environment, such as those characterizing transport properties. A large variety of mixed system--environment observables, as well as their statistical properties, can be evaluated by considering counting fields. Given a numerical method able to simulate the field-modified dynamics over the memory timescale, we show that the long-lived full counting statistics can be efficiently obtained from the reduced dynamics. We demonstrate the utility of the technique by computing the long-time current in the nonequilibrium Anderson impurity model from short-time Monte Carlo simulations.
SciPost Phys. 10, 142 (2021) ·
published 11 June 2021
|
· pdf
The Kondo effect, a hallmark of strong correlation physics, is characterized by the formation of an extended cloud of singlet states around magnetic impurities at low temperatures. While many implications of the Kondo cloud's existence have been verified, the existence of the singlet cloud itself has not been directly demonstrated. We suggest a route for such a demonstration by considering an observable that has no classical analog, but is still experimentally measurable: ``singlet weights'', or projections onto particular entangled two-particle states. Using approximate theoretical arguments, we show that it is possible to construct highly specific energy- and position-resolved probes of Kondo correlations. Furthermore, we consider a quantum transport setup that can be driven away from equilibrium by a bias voltage. There, we show that singlet weights are enhanced by voltage even as the Kondo effect is weakened by it. This exposes a patently nonequilibrium mechanism for the generation of Kondo-like entanglement that is inherently different from its equilibrium counterpart.