SciPost Submission Page
Quantum Monte Carlo detection of SU(2) symmetry breaking in the participation entropies of line subsystems
by David J. Luitz, Nicolas Laflorencie
Submission summary
| Authors (as registered SciPost users): | Nicolas Laflorencie · David J. Luitz |
| Submission information | |
|---|---|
| Preprint Link: | https://arxiv.org/abs/1612.06338v2 (pdf) |
| Date accepted: | Feb. 24, 2017 |
| Date submitted: | Feb. 22, 2017, 1 a.m. |
| Submitted by: | David J. Luitz |
| Submitted to: | SciPost Physics |
| Ontological classification | |
|---|---|
| Academic field: | Physics |
| Specialties: |
|
| Approach: | Theoretical |
Abstract
Using quantum Monte Carlo simulations, we compute the participation (Shannon-R\'enyi) entropies for groundstate wave functions of Heisenberg antiferromagnets for one-dimensional (line) subsystems of length $L$ embedded in two-dimensional ($L\times L$) square lattices. We also study the line entropy at finite temperature, i.e. of the diagonal elements of the density matrix, for three-dimensional ($L\times L\times L$) cubic lattices. The breaking of SU(2) symmetry is clearly captured by a universal logarithmic scaling term $l_q\ln L$ in the R\'enyi entropies, in good agreement with the recent field-theory results of Misguish, Pasquier and Oshikawa [arXiv:1607.02465]. We also study the dependence of the log prefactor $l_q$ on the R\'enyi index $q$ for which a transition is detected at $q_c\simeq 1$.
Published as SciPost Phys. 2, 011 (2017)
