SciPost logo

SciPost Submission Page

Quantum Monte Carlo detection of SU(2) symmetry breaking in the participation entropies of line subsystems

by David J. Luitz, Nicolas Laflorencie

This Submission thread is now published as

Submission summary

Authors (as registered SciPost users): Nicolas Laflorencie · David J. Luitz
Submission information
Preprint Link:  (pdf)
Date accepted: 2017-02-24
Date submitted: 2017-02-22 01:00
Submitted by: Luitz, David J.
Submitted to: SciPost Physics
Ontological classification
Academic field: Physics
  • Quantum Physics
Approach: Theoretical


Using quantum Monte Carlo simulations, we compute the participation (Shannon-R\'enyi) entropies for groundstate wave functions of Heisenberg antiferromagnets for one-dimensional (line) subsystems of length $L$ embedded in two-dimensional ($L\times L$) square lattices. We also study the line entropy at finite temperature, i.e. of the diagonal elements of the density matrix, for three-dimensional ($L\times L\times L$) cubic lattices. The breaking of SU(2) symmetry is clearly captured by a universal logarithmic scaling term $l_q\ln L$ in the R\'enyi entropies, in good agreement with the recent field-theory results of Misguish, Pasquier and Oshikawa [arXiv:1607.02465]. We also study the dependence of the log prefactor $l_q$ on the R\'enyi index $q$ for which a transition is detected at $q_c\simeq 1$.

Published as SciPost Phys. 2, 011 (2017)

Login to report or comment