SciPost logo

The complete scientific publication portal
Managed by professional scientists
For open, global and perpetual access to science

SciPost Submission Page

Title: Probing non-thermal density fluctuations in the one-dimensional Bose gas
Author(s): Jacopo De Nardis, MiƂosz Panfil, Andrea Gambassi, Leticia F. Cugliandolo, Robert Konik, Laura Foini
As Contributors: Jacopo De Nardis
arxiv Link: http://arxiv.org/abs/1704.06649v2
Date submitted: 2017-05-19
Submitted by: De Nardis, Jacopo
Submitted to: SciPost Physics
Domain(s): Exp. & Theor.
Subject area: Quantum Physics

Abstract

Quantum integrable models display a rich variety of non-thermal excited states with unusual properties. The most common way to probe them is by performing a quantum quench, i.e., by letting a many-body initial state unitarily evolve with an integrable Hamiltonian. At late times, these systems are locally described by a generalized Gibbs ensemble with as many effective temperatures as their local conserved quantities. The experimental measurement of this macroscopic number of temperatures remains elusive. Here we show that they can be obtained for the Bose gas in one spatial dimension by probing the dynamical structure factor of the system after the quench and by employing a generalized fluctuation-dissipation theorem that we provide. Our procedure allows us to completely reconstruct the stationary state of a quantum integrable system from state-of-the-art experimental observations.

Current status:

Editor-in-charge assigned, manuscript under review