SciPost Submission Page

Constraining the SMEFT with Bayesian reweighting

by Samuel van Beek, Emanuele R. Nocera, Juan Rojo, Emma Slade

Submission summary

As Contributors: Emanuele Roberto Nocera
Arxiv Link: https://arxiv.org/abs/1906.05296v2
Date submitted: 2019-10-02
Submitted by: Nocera, Emanuele Roberto
Submitted to: SciPost Physics
Discipline: Physics
Subject area: High-Energy Physics - Phenomenology
Approaches: Experimental, Theoretical, Computational

Abstract

We illustrate how Bayesian reweighting can be used to incorporate the constraints provided by new measurements into a global Monte Carlo analysis of the Standard Model Effective Field Theory (SMEFT). This method, extensively applied to study the impact of new data on the parton distribution functions of the proton, is here validated by means of our recent SMEFiT analysis of the top quark sector. We show how, under well-defined conditions and for the SMEFT operators directly sensitive to the new data, the reweighting procedure is equivalent to a corresponding new fit. We quantify the amount of information added to the SMEFT parameter space by means of the Shannon entropy and of the Kolmogorov-Smirnov statistic. We investigate the dependence of our results upon the choice of alternative expressions of the weights.

Current status:
Editor-in-charge assigned


Author comments upon resubmission

See attachment.

List of changes

See attachment.

Login to report or comment