SciPost Submission Page

DMRG study of strongly interacting $\mathbb{Z}_2$ flatbands: a toy model inspired by twisted bilayer graphene

by P. Myles Eugenio, Ceren B. Dağ

Submission summary

As Contributors: Paul Eugenio
Arxiv Link: https://arxiv.org/abs/2004.10363v1
Date submitted: 2020-05-01
Submitted by: Eugenio, Paul
Submitted to: SciPost Physics
Discipline: Physics
Subject area: Condensed Matter Physics - Theory
Approaches: Theoretical, Computational

Abstract

Strong interactions between electrons occupying bands of opposite (or like) topological quantum numbers (Chern$=\pm1$), and with flat dispersion, are studied by using lowest Landau level (LLL) wavefunctions. More precisely, we determine the ground states for two scenarios at half-filling: (i) LLL's with opposite sign of magnetic field, and therefore opposite Chern number; and (ii) LLL's with the same magnetic field. In the first scenario -- which we argue to be a toy model inspired by the chirally symmetric continuum model for twisted bilayer graphene -- the opposite Chern LLL's are Kramer pairs, and thus there exists time-reversal symmetry ($\mathbb{Z}_2$). Turning on repulsive interactions drives the system to spontaneously break time-reversal symmetry -- a quantum anomalous Hall state described by one particle per LLL orbital, either all positive Chern $|++\cdots+>$ or all negative $|--\cdots->$. If instead, interactions are taken between electrons of like-Chern number, the ground state is an $SU(2)$ ferromagnet, with total spin pointing along an arbitrary direction, as with the $\nu=1$ spin-$\frac{1}{2}$ quantum Hall ferromagnet. The ground states and some of their excitations for both of these scenarios are argued analytically, and further complimented by density matrix renormalization group (DMRG) and exact diagonalization.

Current status:
Editor-in-charge assigned


Submission & Refereeing History

Submission 2004.10363v1 on 1 May 2020

Login to report or comment