SciPost logo

SciPost Submission Page

Intermittency analysis of charged particles generated in Xe-Xe~collisions at $\sqrt{s_{\rm{NN}}}$ = 5.44 TeV using the AMPT model

by Zarina Banoo, Ramni Gupta

This Submission thread is now published as

Submission summary

Authors (as registered SciPost users): Zarina Banoo
Submission information
Preprint Link: https://arxiv.org/abs/2210.08058v2  (pdf)
Date accepted: 2023-07-06
Date submitted: 2022-11-24 12:57
Submitted by: Banoo, Zarina
Submitted to: SciPost Physics Proceedings
Proceedings issue: 51st International Symposium on Multiparticle Dynamics (ISMD2022)
Ontological classification
Academic field: Physics
Specialties:
  • High-Energy Physics - Phenomenology
Approach: Phenomenological

Abstract

The multiplicity fluctuations are sensitive to QCD phase transition and to the presence of critical point in QCD phase diagram. At critical point a system undergoing phase transition is characterized by large fluctuations in the observables which is an important tool to understand the dynamics of particle production in heavy-ion interactions and phase changes. Multiplicity fluctuations of produced particles is an important observable to characterize the evolving system. Using scaling exponent obtained from the normalized factorial moments of the number of charged hadrons in the two dimensional ($\eta,\phi$) phase space, one can learn about the dynamics of system created in these collisions. Events generated using Xe-Xe collisions at $\sqrt{s_{\rm{NN}}} = 5.44 $ TeV with string-melting (SM) version of the AMPT model are analyzed and the scaling exponent $(\nu)$ for various $p_T$ intervals is determined. It is observed that the calculated value of $\nu$ is larger than the universal value 1.304, as is obtained from Ginzburg-Landau theory for second order phase transition. Here we will also present the results of the dependence of the scaling exponent on the transverse momentum bin width.

Published as SciPost Phys. Proc. 15, 010 (2024)

Login to report or comment