SciPost Submission Page
Asymptotics of Weil-Petersson volumes and two-dimensional quantum gravities
by Luca Griguolo, Jacopo Papalini, Lorenzo Russo, Domenico Seminara
This Submission thread is now published as
Submission summary
Authors (as registered SciPost users): | Luca Griguolo · Jacopo Papalini |
Submission information | |
---|---|
Preprint Link: | https://arxiv.org/abs/2402.07276v2 (pdf) |
Date accepted: | 2024-11-13 |
Date submitted: | 2024-11-01 19:33 |
Submitted by: | Papalini, Jacopo |
Submitted to: | SciPost Physics |
Ontological classification | |
---|---|
Academic field: | Physics |
Specialties: |
|
Approach: | Theoretical |
Abstract
We propose a refined expression for the large genus asymptotics of the Weil-Petersson volumes of the moduli space of super-Riemann surfaces with an arbitrary number of boundaries. Our formula leverages the connection between JT supergravity and its matrix model definition, utilizing some basic tools of resurgence theory. The final result holds for arbitrary boundary lengths and preserves the polynomial structure of the super-volumes. As a byproduct we also obtain a prediction for the large genus asymptotics of generalized $\Theta$-class intersection numbers. We extend our proposal to the case of the quantum volumes relevant for the Virasoro minimal string/Liouville gravity. Performing the classical limit on the quantum volumes, we recover a formula for the ordinary Weil-Petersson building blocks of JT gravity.
Author indications on fulfilling journal expectations
- Provide a novel and synergetic link between different research areas.
- Open a new pathway in an existing or a new research direction, with clear potential for multi-pronged follow-up work
- Detail a groundbreaking theoretical/experimental/computational discovery
- Present a breakthrough on a previously-identified and long-standing research stumbling block
Published as SciPost Phys. 17, 156 (2024)