SciPost logo

SciPost Submission Page

Realizing triality and $p$-ality by lattice twisted gauging in (1+1)d quantum spin systems

by Da-Chuan Lu, Zhengdi Sun, Yi-Zhuang You

Submission summary

Authors (as registered SciPost users): Da-Chuan Lu
Submission information
Preprint Link: https://arxiv.org/abs/2405.14939v2  (pdf)
Date submitted: 2024-07-01 19:19
Submitted by: Lu, Da-Chuan
Submitted to: SciPost Physics
Ontological classification
Academic field: Physics
Specialties:
  • Condensed Matter Physics - Theory
  • High-Energy Physics - Theory
  • Quantum Physics
Approach: Theoretical

Abstract

In this paper, we study the twisted gauging on the (1+1)d lattice and construct various non-local mappings on the lattice operators. To be specific, we define the twisted Gauss law operator and implement the twisted gauging of the finite group on the lattice motivated by the orbifolding procedure in the conformal field theory, which involves the data of non-trivial element in the second cohomology group of the gauge group. We show the twisted gauging is equivalent to the two-step procedure of first applying the SPT entangler and then untwisted gauging. We use the twisted gauging to construct the triality (order 3) and $p$-ality (order $p$) mapping on the $\mathbb{Z}_p\times \mathbb{Z}_p$ symmetric Hamiltonians, where $p$ is a prime. Such novel non-local mappings generalize Kramers-Wannier duality and they preserve the locality of symmetric operators but map charged operators to non-local ones. We further construct quantum process to realize these non-local mappings and analyze the induced mappings on the phase diagrams. For theories that are invariant under these non-local mappings, they admit the corresponding non-invertible symmetries. The non-invertible symmetry will constrain the theory at the multicritical point between the gapped phases. We further give the condition when the non-invertible symmetry can have symmetric gapped phase with a unique ground state.

Author indications on fulfilling journal expectations

  • Provide a novel and synergetic link between different research areas.
  • Open a new pathway in an existing or a new research direction, with clear potential for multi-pronged follow-up work
  • Detail a groundbreaking theoretical/experimental/computational discovery
  • Present a breakthrough on a previously-identified and long-standing research stumbling block
Current status:
In refereeing

Login to report or comment