SciPost Phys. 17, 136 (2024) ·
published 15 November 2024
|
· pdf
In this paper, we study the twisted gauging on the (1+1)d lattice and construct various non-local mappings on the lattice operators. To be specific, we define the twisted Gauss law operator and implement the twisted gauging of the finite group on the lattice motivated by the orbifolding procedure in the conformal field theory, which involves the data of non-trivial element in the second cohomology group of the gauge group. We show the twisted gauging is equivalent to the two-step procedure of first applying the SPT entangler and then untwisted gauging. We use the twisted gauging to construct the triality (order 3) and $p$-ality (order $p$) mapping on the $\mathbb{Z}_p× \mathbb{Z}_p$ symmetric Hamiltonians, where $p$ is a prime. Such novel non-local mappings generalize Kramers-Wannier duality and they preserve the locality of symmetric operators but map charged operators to non-local ones. We further construct quantum process to realize these non-local mappings and analyze the induced mappings on the phase diagrams. For theories that are invariant under these non-local mappings, they admit the corresponding non-invertible symmetries. The non-invertible symmetry will constrain the theory at the multicritical point between the gapped phases. We further give the condition when the non-invertible symmetry can have symmetric gapped phase with a unique ground state.
SciPost Phys. Core 6, 047 (2023) ·
published 6 July 2023
|
· pdf
In this paper, we propose using the nonlinear sigma model (NLSM) with the Wess-Zumino-Witten (WZW) term as a general description of deconfined quantum critical points that separate two spontaneously symmetry-breaking (SSB) phases in arbitrary dimensions. In particular, we discuss the suitable choice of the target space of the NLSM, which is in general the homogeneous space G/K, where $G$ is the UV symmetry and $K$ is generated by ${\mathfrak k}={\mathfrak h}_1\cap {\mathfrak h}_2$, and ${\mathfrak h}_i$ is the Lie algebra of the unbroken symmetry in each SSB phase. With this specific target space, the symmetry defects in both SSB phases are on equal footing, and their intertwinement is captured by the WZW term. The DQCP transition is then tuned by proliferating the symmetry defects. By coupling the $G/K$ NLSM with the WZW term to the background gauge field, the 't Hooft anomaly of this theory can be determined. The bulk symmetry-protected topological (SPT) phase that cancels the anomaly is described by the relative Chern-Simons term in odd spacetime dimensions or mixed $\theta$ term in even dimensions. We construct and discuss a series of models with Grassmannian symmetry defects in 3+1d. We also provide the fermionic model that reproduces the $G/K$ NLSM with the WZW term.
Dr Lu: "We thank the referee for clari..."
in Submissions | report on Realizing triality and $p$-ality by lattice twisted gauging in (1+1)d quantum spin systems