SciPost Submission Page
Pivoting through the chiral-clock family
by Nick G. Jones, Abhishodh Prakash, Paul Fendley
Submission summary
Authors (as registered SciPost users): | Nick Jones |
Submission information | |
---|---|
Preprint Link: | https://arxiv.org/abs/2406.01680v1 (pdf) |
Date submitted: | 2024-06-12 13:26 |
Submitted by: | Jones, Nick |
Submitted to: | SciPost Physics |
Ontological classification | |
---|---|
Academic field: | Physics |
Specialties: |
|
Abstract
The Onsager algebra, invented to solve the two-dimensional Ising model, can be used to construct conserved charges for a family of integrable $N$-state chiral clock models. We show how it naturally gives rise to a "pivot" procedure for this family of chiral Hamiltonians. These Hamiltonians have an anti-unitary CPT symmetry that when combined with the usual $\mathbb{Z}_N$ clock symmetry gives a non-abelian dihedral symmetry group $D_{2N}$. We show that this symmetry gives rise to symmetry-protected topological (SPT) order in this family for all even $N$, and representation-SPT (RSPT) physics for all odd $N$. The simplest such example is a next-nearest-neighbour chain generalising the spin-1/2 cluster model, an SPT phase of matter. We derive a matrix-product state representation of its fixed-point ground state along with the ensuing entanglement spectrum and symmetry fractionalisation. We analyse a rich phase diagram combining this model with the Onsager-integrable chiral Potts chain, and find trivial, symmetry-breaking and (R)SPT orders, as well as extended gapless regions. For odd $N$, the phase transitions are "unnecessarily" critical from the SPT point of view.
Author indications on fulfilling journal expectations
- Provide a novel and synergetic link between different research areas.
- Open a new pathway in an existing or a new research direction, with clear potential for multi-pronged follow-up work
- Detail a groundbreaking theoretical/experimental/computational discovery
- Present a breakthrough on a previously-identified and long-standing research stumbling block