SciPost logo

SciPost Submission Page

On the breakdown of dimensional reduction and supersymmetry in random-field models

by Gilles Tarjus, Matthieu Tissier, Ivan Balog

Submission summary

Authors (as registered SciPost users): Ivan Balog · Gilles Tarjus
Submission information
Preprint Link: https://arxiv.org/abs/2411.11147v2  (pdf)
Date submitted: 2024-11-27 13:39
Submitted by: Tarjus, Gilles
Submitted to: SciPost Physics
Ontological classification
Academic field: Physics
Specialties:
  • Condensed Matter Physics - Theory
  • High-Energy Physics - Theory
  • Statistical and Soft Matter Physics
Approach: Theoretical

Abstract

We discuss the breakdown of the Parisi-Sourlas supersymmetry (SUSY) and of the dimensional-reduction (DR) property in the random field Ising and O($N$) models as a function of space dimension $d$ and/or number of components $N$. The functional renormalization group (FRG) predicts that this takes place below a critical line $d_{\rm DR}(N)$. We revisit the perturbative FRG results for the RFO($N$)M in $d=4+\epsilon$ and carry out a more comprehensive investigation of the nonperturbative FRG approximation for the RFIM. In light of this FRG description, we discuss the perturbative results in $\epsilon=6-d$ recently derived for the RFIM by Kaviraj, Rychkov, and Trevisani. We stress in particular that the disappearance of the SUSY/DR fixed point below $d_{\rm DR}$ arises as a consequence of the nonlinearity of the FRG equations and cannot be found via the perturbative expansion in $\epsilon=6-d$ (nor in $1/N$). We also provide an error bar on the value of the critical dimension $d_{\rm DR}$ for the RFIM, which we find around $5.11\pm0.09$, by studying several successive orders of the nonperturbative FRG approximation scheme.

Author indications on fulfilling journal expectations

  • Provide a novel and synergetic link between different research areas.
  • Open a new pathway in an existing or a new research direction, with clear potential for multi-pronged follow-up work
  • Detail a groundbreaking theoretical/experimental/computational discovery
  • Present a breakthrough on a previously-identified and long-standing research stumbling block
Current status:
In refereeing

Login to report or comment