Benjamin Guiselin, Ludovic Berthier, Gilles Tarjus
SciPost Phys. 12, 091 (2022) ·
published 14 March 2022
|
· pdf
We study the statistical mechanics of supercooled liquids when the system evolves at a temperature $T$ with a field $\epsilon$ linearly coupled to its overlap with a reference configuration of the same liquid sampled at a temperature $T_0$. We use mean-field theory to fully characterize the influence of the reference temperature $T_0$, and we mainly study the case of a fixed, low-$T_0$ value in computer simulations. We numerically investigate the extended phase diagram in the $(\epsilon,T)$ plane of model glass-forming liquids in spatial dimensions $d=2$ and $d=3$, relying on umbrella sampling and reweighting techniques. For both $2d$ and $3d$ cases, a similar phenomenology with nontrivial thermodynamic fluctuations of the overlap is observed at low temperatures, but a detailed finite-size analysis reveals qualitatively distinct behaviors. We establish the existence of a first-order transition line for nonzero $\epsilon$ ending in a critical point in the universality class of the random-field Ising model (RFIM) in $d=3$. In $d=2$ instead, no phase transition is found in large enough systems at least down to temperatures below the extrapolated calorimetric glass transition temperature $T_g$. Our results confirm that glass-forming liquid samples of limited size display the thermodynamic fluctuations expected for finite systems undergoing a random first-order transition. They also support the relevance of the physics of the RFIM for supercooled liquids, which may then explain the qualitative difference between $2d$ and $3d$ glass-formers.
Giulio Biroli, Charlotte Rulquin, Gilles Tarjus, Marco Tarzia
SciPost Phys. 1, 007 (2016) ·
published 25 October 2016
|
· pdf
We study the role of fluctuations on the thermodynamic glassy properties of plaquette spin models, more specifically on the transition involving an overlap order parameter in the presence of an attractive coupling between different replicas of the system. We consider both short-range fluctuations associated with the local environment on Bethe lattices and long-range fluctuations that distinguish Euclidean from Bethe lattices with the same local environment. We find that the phase diagram in the temperature-coupling plane is very sensitive to the former but, at least for the $3$-dimensional (square pyramid) model, appears qualitatively or semi-quantitatively unchanged by the latter. This surprising result suggests that the mean-field theory of glasses provides a reasonable account of the glassy thermodynamics of models otherwise described in terms of the kinetically constrained motion of localized defects and taken as a paradigm for the theory of dynamic facilitation. We discuss the possible implications for the dynamical behavior.