SciPost Submission Page
Jacobi-Lie T-plurality
by Jose J. Fernandez-Melgarejo, Yuho Sakatani
This Submission thread is now published as
Submission summary
Submission information |
Preprint Link: |
scipost_202104_00025v2
(pdf)
|
Date accepted: |
2021-08-16 |
Date submitted: |
2021-07-21 09:16 |
Submitted by: |
Fernandez-Melgarejo, Jose J. |
Submitted to: |
SciPost Physics |
Ontological classification |
Academic field: |
Physics |
Specialties: |
- High-Energy Physics - Theory
|
Approach: |
Theoretical |
Abstract
We propose a Leibniz algebra, to be called DD$^+$, which is a generalization of the Drinfel'd double. We find that there is a one-to-one correspondence between a DD$^+$ and a Jacobi--Lie bialgebra, extending the known correspondence between a Lie bialgebra and a Drinfel'd double. We then construct generalized frame fields $E_A{}^M\in\text{O}(D,D)\times\mathbb{R}^+$ satisfying the algebra ${\cal L}_{E_A}E_B = - X_{AB}{}^C\,E_C$\,, where $X_{AB}{}^C$ are the structure constants of the DD$^+$ and ${\cal L}$ is the generalized Lie derivative in double field theory. Using the generalized frame fields, we propose the Jacobi--Lie $T$-plurality and show that it is a symmetry of double field theory. We present several examples of the Jacobi--Lie $T$-plurality with or without Ramond--Ramond fields and the spectator fields.