SciPost Submission Page

A massive variable flavour number scheme for the Drell-Yan process

by R. Gauld

Submission summary

As Contributors: Rhorry Gauld
Preprint link: scipost_202107_00031v1
Date submitted: 2021-07-20 10:29
Submitted by: Gauld, Rhorry
Submitted to: SciPost Physics
Academic field: Physics
Specialties:
  • High-Energy Physics - Phenomenology
Approaches: Theoretical, Phenomenological

Abstract

The prediction of differential cross-sections in hadron-hadron scattering processes is typically performed in a scheme where the heavy-flavour quarks ($c, b, t$) are treated either as massless or massive partons. In this work, a method to describe the production of colour-singlet processes which combines these two approaches is presented. The core idea is that the contribution from power corrections involving the heavy-quark mass can be numerically isolated from the rest of the massive computation. These power corrections can then be combined with a massless computation (where they are absent), enabling the construction of differential cross-section predictions in a massive variable flavour number scheme. As an example, the procedure is applied to the low-mass Drell-Yan process within the LHCb fiducial region, where predictions for the rapidity and transverse-momentum distributions of the lepton pair are provided. To validate the procedure, it is shown how the $n_f$-dependent coefficient of a massless computation can be recovered from the massless limit of the massive one. This feature is also used to differentially extract the massless ${\rm N3LO}$ coefficient of the Drell-Yan process in the gluon-fusion channel.

Current status:
Editor-in-charge assigned


Submission & Refereeing History

You are currently on this page

Submission scipost_202107_00031v1 on 20 July 2021

Login to report or comment