SciPost Submission Page
The partial Bondi gauge: Further enlarging the asymptotic structure of gravity
by Marc Geiller, Céline Zwikel
This Submission thread is now published as
Submission summary
Authors (as registered SciPost users): | Marc Geiller |
Submission information | |
---|---|
Preprint Link: | scipost_202207_00048v1 (pdf) |
Date accepted: | 2022-09-20 |
Date submitted: | 2022-07-29 18:37 |
Submitted by: | Geiller, Marc |
Submitted to: | SciPost Physics |
Ontological classification | |
---|---|
Academic field: | Physics |
Specialties: |
|
Approach: | Theoretical |
Abstract
We present a detailed analysis of gravity in a partial Bondi gauge, where only the three conditions $g_{rr}=0=g_{rA}$ are fixed. We relax in particular the so-called determinant condition on the transverse metric, which is only assumed to admit a polyhomogeneous radial expansion. This is sufficient in order to build the solution space, which here includes a cosmological constant, time-dependent sources in the boundary metric, logarithmic branches, and an extra trace mode at subleading order in the transverse metric. The evolution equations are studied using the Newman-Penrose formalism in terms of covariant functionals identified from the Weyl scalars, and we build the explicit dictionary between this formalism and the tensorial Einstein equations. This provides in particular a new derivation of the (A)dS mass loss formula. We then study the holographic renormalisation of the symplectic potential, and the transformation laws under residual asymptotic symmetries. The advantage of the partial Bondi gauge is that it allows to contrast and treat in a unified manner the Bondi-Sachs and Newman-Unti gauges, which can each be reached upon imposing a further specific gauge condition. The differential determinant condition leads to the $\Lambda$-BMSW gauge, while a differential condition on $g_{ur}$ leads to a generalized Newman-Unti gauge. This latter gives access to a new asymptotic symmetry which acts on the asymptotic shear and further extends the $\Lambda$-BMSW group by an extra abelian radial translation. This generalizes results which we have recently obtained in three dimensions.
Published as SciPost Phys. 13, 108 (2022)
Reports on this Submission
Report
After the first reviewing process, the authors provided very useful comments to answer my optional questions. They augmented the text accordingly with these comments in order to clarify the related points in the second version of the paper. Therefore, I'm happy to recommend it for publication in its present form.