SciPost logo

SciPost Submission Page

LHC tau-pair production constraints on $a_\tau$ and $d_\tau$

by Ulrich Haisch, Luc Schnell, Joachim Weiss

This is not the latest submitted version.

This Submission thread is now published as

Submission summary

Authors (as registered SciPost users): Ulrich Haisch
Submission information
Preprint Link: scipost_202308_00018v1  (pdf)
Date submitted: 2023-08-14 15:42
Submitted by: Haisch, Ulrich
Submitted to: SciPost Physics
Ontological classification
Academic field: Physics
Specialties:
  • High-Energy Physics - Phenomenology
Approach: Phenomenological

Abstract

We point out that relevant constraints on the anomalous magnetic ($a_\tau$) and electric ($d_\tau$ ) moment of the tau lepton can be derived from tau-pair production measurements performed at the LHC. Our conclusion is based on the observation that the leading relative deviations from the Standard Model prediction for $pp \to \tau^+ \tau^-$ due to aτ and dτ are enhanced at high energies. Less precise measurements at hadron colliders can therefore offer the same or better sensitivity to new physics with respect to high-precision low-energy measurements performed at lepton machines. We derive bounds on aτ and dτ using the full LHC Run II data set on tau-pair production and compare our findings with the current best limits on the tau anomalous moments.

Current status:
Has been resubmitted

Reports on this Submission

Anonymous Report 2 on 2023-11-2 (Invited Report)

  • Cite as: Anonymous, Report on arXiv:scipost_202308_00018v1, delivered 2023-11-02, doi: 10.21468/SciPost.Report.8040

Report

This article provides a nice analysis of tau pair DY production and its relevance for the tau anomalous couplings. The conclusions rest on a range of assumptions, which are, however, not entirely clear.

(i) all effects are attributed to the tau lepton-sector. How does this compare to the competing coupling modifications that can be expected in other fermion interactions that DY is sensitive to?

(ii) the Z contribution is chosen to vanish. Is this a reasonable assumption? I would expect through Z-photon mixing to see correlated effects away from the Z resonance that can become relevant at large momentum transfers that are highlighted as particularly relevant by the authors.

  • validity: -
  • significance: -
  • originality: -
  • clarity: -
  • formatting: -
  • grammar: -

Author:  Ulrich Haisch  on 2023-11-14  [id 4112]

(in reply to Report 2 on 2023-11-02)
Category:
answer to question

\section*{Report of the referee 2}

\begin{enumerate}

\item[(Q1)] {\it All effects are attributed to the tau lepton-sector. How does this compare to the competing coupling modifications that can be expected in other fermion interactions that DY is sensitive to?}

\item[(A1)] Tau-pair production is a sensitive probe of various operators in the Standard Model effective field theory~(SMEFT). For instance, four-fermion operators of the form $(\bar q \hspace{0.5mm} \Gamma \hspace{0.25mm} q) (\bar \tau \hspace{0.125mm} \Gamma \hspace{0.0mm} \tau)$ with $\Gamma$ denoting a Dirac structure and $q$ a up or down quark are known to lead to visible enhancements in the high-energy tails of the $pp \to \tau^+ \tau^-$ process. See for example

\begin{verbatim}
@article{Greljo:2017vvb,
author = "Greljo, Admir and Marzocca, David",
title = "{High-$p_T$ dilepton tails and flavor physics}",
eprint = "1704.09015",
archivePrefix = "arXiv",
primaryClass = "hep-ph",
reportNumber = "ZU-TH-12-17",
doi = "10.1140/epjc/s10052-017-5119-8",
journal = "Eur. Phys. J. C",
volume = "77",
number = "8",
pages = "548",
year = "2017"
}
\end{verbatim}

for a comprehensive discussion. Notice that the goal of our note is not to perform a global SMEFT fit using the existing ditau data but to point out that the effective interactions~(6) that give a BSM effect to $a_\tau$ and $d_\tau$ also lead to energy-enhanced effects in $pp \to \tau^+ \tau^-$ production. As we show in our work, this opens up the possibility to use existing LHC data on tau-pair production to set bounds on $a_\tau$ that are better than all other existing constraints that are based on the same assumptions.

\item[(Q2)] {\it The $Z$ contribution is chosen to vanish. Is this a reasonable assumption? I would expect through Z-photon mixing to see correlated effects away from the Z resonance that can become relevant at large momentum transfers that are highlighted as particularly relevant by the authors.}

\item[(A2)] We are not exactly sure what the referee implies with the second part of the question. Let us explain our motivation to consider only cases with $c_{\tau Z} =0$ in the analysis. Allowing for $c_{\tau Z} \neq 0$ and deriving constraints in the $c_{\tau \gamma}\hspace{0.25mm}$--$\hspace{0.25mm}c_{\tau Z}$ plane using $pp \to \tau^+ \tau^-$ data would be straightforward, however, we refrain from performing such an analysis in scipost\_202308\_00018v1. The reason for this is simply that the bounds~(1) and~(2) have been derived under the assumption that there is only an anomalous $\gamma \tau^+ \tau^-$ coupling but no anomalous $Z \tau^+ \tau^-$ coupling. The main results of our study,~i.e.~the limits~(13) and (14) that have been derived under the same assumption, can therefore be compared directly to~(1) and~(2) which would not be the case if we were to consider cases with $c_{\tau Z}\neq 0$. We have added a short explanation along these lines to the text.

\end{enumerate}

Attachment:

reply.pdf

Anonymous Report 1 on 2023-11-1 (Invited Report)

  • Cite as: Anonymous, Report on arXiv:scipost_202308_00018v1, delivered 2023-11-01, doi: 10.21468/SciPost.Report.8030

Report

This work is precise and succinct, yet detailed enough, highlighting a key insight into probing new physics in anomalous dipole moments of the tau lepton. The authors effectively set limits on the relevant SMEFT dipoles using high-mass Drell-Yan tails. Notably, the determined limits are the most competitive for the anomalous magnetic moment. Before I recommend this for publication, I have two areas I would like the authors to address:

1. Could the authors briefly comment on the UV models where these bounds are of interest? It is my understanding that perturbative models typically generate these effects at the one-loop level. Referring to eq. (13), this seems pertinent primarily for lighter particle mediators, where the EFT methodology might not be applicable and direct searches come into play.

2. The authors suggest that the SM target at the HL-LHC will be met. Could they elaborate on the implications for the high-mass tails? Specifically, which SM corrections will become more significant? Additionally, how adequate is the SM prediction at such a precision level?

  • validity: -
  • significance: -
  • originality: -
  • clarity: -
  • formatting: -
  • grammar: -

Login to report or comment