Loop current fluctuations and quantum critical transport
Zhengyan Darius Shi, Dominic V. Else, Hart Goldman, T. Senthil
SciPost Phys. 14, 113 (2023) · published 15 May 2023
- doi: 10.21468/SciPostPhys.14.5.113
- Submissions/Reports
Abstract
We study electrical transport at quantum critical points (QCPs) associated with loop current ordering in a metal, focusing specifically on models of the "Hertz-Millis" type. At the infrared (IR) fixed point and in the absence of disorder, the simplest such models have infinite DC conductivity and zero incoherent conductivity at nonzero frequencies. However, we find that a particular deformation, involving $N$ species of bosons and fermions with random couplings in flavor space, admits a finite incoherent, frequency-dependent conductivity at the IR fixed point, $\sigma(\omega>0)\sim\omega^{-2/z}$, where $z$ is the boson dynamical exponent. Leveraging the non-perturbative structure of quantum anomalies, we develop a powerful calculational method for transport. The resulting "anomaly-assisted large $N$ expansion" allows us to extract the conductivity systematically. Although our results imply that such random-flavor models are problematic as a description of the physical $N = 1$ system, they serve to illustrate some general conditions for quantum critical transport as well as the anomaly-assisted calculational methods. In addition, we revisit an old result that irrelevant operators generate a frequency-dependent conductivity, $\sigma(\omega>0) \sim \omega^{-2(z-2)/z}$, in problems of this kind. We show explicitly, within the scope of the original calculation, that this result does not hold for any order parameter.