Anomalies in the space of coupling constants and their dynamical applications I
Clay Córdova, Daniel S. Freed, Ho Tat Lam, Nathan Seiberg
SciPost Phys. 8, 001 (2020) · published 6 January 2020
- doi: 10.21468/SciPostPhys.8.1.001
- Submissions/Reports
-
Abstract
It is customary to couple a quantum system to external classical fields. One application is to couple the global symmetries of the system (including the Poincar\'{e} symmetry) to background gauge fields (and a metric for the Poincar\'{e} symmetry). Failure of gauge invariance of the partition function under gauge transformations of these fields reflects 't Hooft anomalies. It is also common to view the ordinary (scalar) coupling constants as background fields, i.e. to study the theory when they are spacetime dependent. We will show that the notion of 't Hooft anomalies can be extended naturally to include these scalar background fields. Just as ordinary 't Hooft anomalies allow us to deduce dynamical consequences about the phases of the theory and its defects, the same is true for these generalized 't Hooft anomalies. Specifically, since the coupling constants vary, we can learn that certain phase transitions must be present. We will demonstrate these anomalies and their applications in simple pedagogical examples in one dimension (quantum mechanics) and in some two, three, and four-dimensional quantum field theories. An anomaly is an example of an invertible field theory, which can be described as an object in (generalized) differential cohomology. We give an introduction to this perspective. Also, we use Quillen's superconnections to derive the anomaly for a free spinor field with variable mass. In a companion paper we will study four-dimensional gauge theories showing how our view unifies and extends many recently obtained results.
TY - JOUR
PB - SciPost Foundation
DO - 10.21468/SciPostPhys.8.1.001
TI - Anomalies in the space of coupling constants and their dynamical applications I
PY - 2020/01/06
UR - https://scipost.org/SciPostPhys.8.1.001
JF - SciPost Physics
JA - SciPost Phys.
VL - 8
IS - 1
SP - 001
A1 - Córdova, Clay
AU - Freed, Daniel
AU - Lam, Ho Tat
AU - Seiberg, Nathan
AB - It is customary to couple a quantum system to external classical fields. One application is to couple the global symmetries of the system (including the Poincar\'{e} symmetry) to background gauge fields (and a metric for the Poincar\'{e} symmetry). Failure of gauge invariance of the partition function under gauge transformations of these fields reflects 't Hooft anomalies. It is also common to view the ordinary (scalar) coupling constants as background fields, i.e. to study the theory when they are spacetime dependent. We will show that the notion of 't Hooft anomalies can be extended naturally to include these scalar background fields. Just as ordinary 't Hooft anomalies allow us to deduce dynamical consequences about the phases of the theory and its defects, the same is true for these generalized 't Hooft anomalies. Specifically, since the coupling constants vary, we can learn that certain phase transitions must be present. We will demonstrate these anomalies and their applications in simple pedagogical examples in one dimension (quantum mechanics) and in some two, three, and four-dimensional quantum field theories. An anomaly is an example of an invertible field theory, which can be described as an object in (generalized) differential cohomology. We give an introduction to this perspective. Also, we use Quillen's superconnections to derive the anomaly for a free spinor field with variable mass. In a companion paper we will study four-dimensional gauge theories showing how our view unifies and extends many recently obtained results.
ER -
@Article{10.21468/SciPostPhys.8.1.001,
title={{Anomalies in the space of coupling constants and their dynamical applications I}},
author={Clay Córdova and Daniel S. Freed and Ho Tat Lam and Nathan Seiberg},
journal={SciPost Phys.},
volume={8},
pages={001},
year={2020},
publisher={SciPost},
doi={10.21468/SciPostPhys.8.1.001},
url={https://scipost.org/10.21468/SciPostPhys.8.1.001},
}
Cited by 150
-
Yamamoto et al., Generalized chiral instabilities, linking numbers, and non-invertible symmetries
J. High Energ. Phys. 2023, 45 (2023) [Crossref] -
Ang et al., Line operators of gauge theories on non-spin manifolds
J high energy phys 2020, 87 (2020) [Crossref] -
Tanizaki,
, 3007 (2023) [Crossref] -
Moy et al., Intertwined order of generalized global symmetries
SciPost Phys. 18, 157 (2025) [Crossref] -
Sommer et al., Higher Berry Curvature from the Wave Function. I. Schmidt Decomposition and Matrix Product States
Phys. Rev. Lett. 134, 146601 (2025) [Crossref] -
Seiberg, Anomalous continuous translations
SciPost Phys. 19, 031 (2025) [Crossref] -
Katayama et al., 2d Cardy-Rabinovici model with the modified Villain lattice: exact dualities and symmetries
J. High Energ. Phys. 2025, 4 (2025) [Crossref] -
Chen et al., Deconfinement and
CP
breaking at
θ=π
in Yang-Mills theories and a novel phase for SU(2)
Phys. Rev. D 102, 034020 (2020) [Crossref] -
Apruzzi et al., The fate of discrete 1-form symmetries in 6d
SciPost Phys. 12, 047 (2022) [Crossref] -
Csáki et al., Phase transitions at unusual values of θ
J. High Energ. Phys. 2025, 4 (2025) [Crossref] -
Hsin et al., Symmetry-enriched quantum spin liquids in (3 + 1)d
J. High Energ. Phys. 2020, 22 (2020) [Crossref] -
Hsin et al., Berry phase in quantum field theory: Diabolical points and boundary phenomena
Phys. Rev. B 102, 245113 (2020) [Crossref] -
Gu et al., The 𝑝-primary subgroups of the cohomology of 𝐵𝑃𝑈_{𝑛} in dimensions less than 2𝑝+5
Proc. Amer. Math. Soc. 150, 4099 (2022) [Crossref] -
Kaidi et al., Symmetry TFTs and anomalies of non-invertible symmetries
J. High Energ. Phys. 2023, 53 (2023) [Crossref] -
Sommer et al., Higher Berry curvature from the wave function. II. Locally parametrized states beyond one dimension
Phys. Rev. B 111, 155110 (2025) [Crossref] -
Pimentel et al., Real-time corrections to the effective potential
J. High Energ. Phys. 2020, 96 (2020) [Crossref] -
Cherman et al., Four-fermion deformations of the massless Schwinger model and confinement
J. High Energ. Phys. 2023, 87 (2023) [Crossref] -
Najjar et al., (−1)-form symmetries from M-theory and SymTFTs
J. High Energ. Phys. 2025, 134 (2025) [Crossref] -
Hull et al., Generalised symmetries in linear gravity
J. High Energ. Phys. 2025, 46 (2025) [Crossref] -
Debray et al., A long exact sequence in symmetry breaking: order parameter constraints, defect anomaly-matching, and higher Berry phases
J. High Energ. Phys. 2025, 7 (2025) [Crossref] -
Sulejmanpasic et al., Universality between vector-like and chiral quiver gauge theories: anomalies and domain walls
J. High Energ. Phys. 2020, 173 (2020) [Crossref] -
Kan et al., From 3D dualities to hadron physics
Phys. Rev. D 102, 125034 (2020) [Crossref] -
Slagle, Foliated Quantum Field Theory of Fracton Order
Phys. Rev. Lett. 126, 101603 (2021) [Crossref] -
Cvetič et al., Higher-form symmetries and their anomalies in M-/F-theory duality
Phys. Rev. D 104, 126019 (2021) [Crossref] -
Brauner, Field theories with higher-group symmetry from composite currents
J. High Energ. Phys. 2021, 45 (2021) [Crossref] -
Ohmori et al., Anomaly matching across dimensions and supersymmetric Cardy formulae
J. High Energ. Phys. 2022, 27 (2022) [Crossref] -
Yao et al., Modulating Hamiltonian approach to quantum many-body systems and crystalline topological phases protected by generalized magnetic translations
Phys. Rev. B 110, 094410 (2024) [Crossref] -
Tanizaki,
, 1 (2023) [Crossref] -
Qi et al., Charting the space of ground states with tensor networks
SciPost Phys. 18, 168 (2025) [Crossref] -
Abe et al., Magnetic operators in 2D compact scalar field theories on the lattice
2023, 073B01 (2023) [Crossref] -
Brennan et al., Anomalies of 4d SpinG theories
J. High Energ. Phys. 2024, 157 (2024) [Crossref] -
De Cesare et al., Disturbing News About the d = 2 + ϵ Expansion
2025, 093B02 (2025) [Crossref] -
Cherman et al., Emergent 1-form symmetries
Phys. Rev. D 109, 125013 (2024) [Crossref] -
Razamat et al., Generalized lattices, conformal manifolds, and symmetries
SciPost Phys. 19, 069 (2025) [Crossref] -
Abe et al., Topology of SU(N) lattice gauge theories coupled with ℤN 2-form gauge fields
J. High Energ. Phys. 2023, 118 (2023) [Crossref] -
Brennan et al., Axions, higher-groups, and emergent symmetry
J. High Energ. Phys. 2022, 145 (2022) [Crossref] -
Anber, Condensates and anomaly cascade in vector-like theories
J. High Energ. Phys. 2021, 191 (2021) [Crossref] -
Yao et al., Gappability Index for Quantum Many-Body Systems
Phys. Rev. Lett. 129, 017204 (2022) [Crossref] -
Ohyama et al., Higher structures in matrix product states
Phys. Rev. B 109, 115152 (2024) [Crossref] -
Apruzzi, Higher form symmetries TFT in 6d
J. High Energ. Phys. 2022, 50 (2022) [Crossref] -
Nguyen et al., Winding θ and destructive interference of instantons
J. High Energ. Phys. 2023, 33 (2023) [Crossref] -
Cvetič et al., String Universality and Non-Simply-Connected Gauge Groups in 8D
Phys. Rev. Lett. 125, 211602 (2020) [Crossref] -
Furusawa et al., Finite-density massless two-color QCD at the isospin Roberge-Weiss point and the 't Hooft anomaly
Phys. Rev. Research 2, 033253 (2020) [Crossref] -
Ohyama et al., Higher Berry connection for matrix product states
Phys. Rev. B 111, 035121 (2025) [Crossref] -
Lu et al., Definition and classification of Fermi surface anomalies
Phys. Rev. B 109, 045123 (2024) [Crossref] -
Bergman et al., Non-BPS branes and continuous symmetries
J. High Energ. Phys. 2025, 66 (2025) [Crossref] -
Cheung et al., Generalized symmetry in dynamical gravity
J. High Energ. Phys. 2024, 7 (2024) [Crossref] -
Jones et al., Charge pumps, pivot Hamiltonians, and symmetry-protected topological phases
Phys. Rev. B 112, 165123 (2025) [Crossref] -
Yu, Gauging in parameter space: A top-down perspective
Phys. Rev. D 112, 025020 (2025) [Crossref] -
Pozsgay et al., Integrable spin chain with Hilbert space fragmentation and solvable real-time dynamics
Phys. Rev. E 104, 044106 (2021) [Crossref] -
Aloni et al., Spontaneously broken (-1)-form U(1) symmetries
SciPost Phys. 17, 031 (2024) [Crossref] -
Anber et al., Deconfinement on axion domain walls
J. High Energ. Phys. 2020, 124 (2020) [Crossref] -
Dierigl et al., Geometric approach to 3D interfaces at strong coupling
Phys. Rev. D 102, 106011 (2020) [Crossref] -
Heidenreich et al., Chern-Weil global symmetries and how quantum gravity avoids them
J. High Energ. Phys. 2021, 53 (2021) [Crossref] -
Fukushima et al., Exploring the θ-vacuum structure in the functional renormalization group approach
J. High Energ. Phys. 2022, 40 (2022) [Crossref] -
Bah et al., M5-branes probing flux backgrounds
J. High Energ. Phys. 2022, 122 (2022) [Crossref] -
Ciambriello et al., Proof of chiral symmetry breaking from anomaly matching in QCD-like theories
Phys. Rev. D 110, 114035 (2024) [Crossref] -
Seiberg et al., LSM and CPT
J. High Energ. Phys. 2025, 116 (2025) [Crossref] -
Shiozaki, Adiabatic cycles of quantum spin systems
Phys. Rev. B 106, 125108 (2022) [Crossref] -
Santilli et al., Higher form symmetries and orbifolds of two-dimensional Yang–Mills theory
Lett Math Phys 115, 15 (2025) [Crossref] -
Gould et al., Swampland constraints on the symmetry topological field theory of supergravity
Phys. Rev. D 109, 126005 (2024) [Crossref] -
Kobayashi et al., The QCD phase diagram in the space of imaginary chemical potential via ’t Hooft anomalies
J. High Energ. Phys. 2023, 132 (2023) [Crossref] -
Gorantla et al., Interface junctions in QCD${}_4$
SciPost Phys. 10, 085 (2021) [Crossref] -
Leutgeb et al., Superconnections in AdS/QCD and the hadronic light-by-light contribution to the muon
g−2
Phys. Rev. D 111, 114001 (2025) [Crossref] -
García-Valdecasas et al., Monopole breaking of Chern-Weil symmetries
SciPost Phys. 18, 162 (2025) [Crossref] -
Carqueville et al.,
, 621 (2025) [Crossref] -
Apruzzi et al., Symmetry TFTs from String Theory
Commun. Math. Phys. 402, 895 (2023) [Crossref] -
Liu et al., Multiwavefunction overlap and multientropy for topological ground states in (
2+1
) dimensions
Phys. Rev. B 112, 125160 (2025) [Crossref] -
Antinucci et al., Anomalies and gauging of
U(1)
symmetries
Phys. Rev. B 111, 024110 (2025) [Crossref] -
Nguyen et al., Lattice regularizations of
θ
vacua: Anomalies and qubit models
Phys. Rev. D 107, 014507 (2023) [Crossref] -
Wang et al., Gauge enhanced quantum criticality and time reversal deconfined domain wall: SU(2) Yang-Mills dynamics with topological terms
Phys. Rev. Research 2, 013189 (2020) [Crossref] -
Dierigl et al., The axion is going dark
J. High Energ. Phys. 2024, 104 (2024) [Crossref] -
Stout, Instanton expansions and phase transitions
J. High Energ. Phys. 2022, 168 (2022) [Crossref] -
Hamada et al., Finiteness and the swampland
J. Phys. A: Math. Theor. 55, 224005 (2022) [Crossref] -
Seiberg, Ferromagnets, a new anomaly, instantons, and (noninvertible) continuous translations
SciPost Phys. 18, 063 (2025) [Crossref] -
Wang et al., Cobordism and deformation class of the standard model
Phys. Rev. D 106, L041701 (2022) [Crossref] -
Seiberg et al., Symmetry transmutation and anomaly matching
J. High Energ. Phys. 2025, 14 (2025) [Crossref] -
Hidaka et al., Global 3-group symmetry and ’t Hooft anomalies in axion electrodynamics
J. High Energ. Phys. 2021, 173 (2021) [Crossref] -
Lee et al., Revisiting Wess-Zumino-Witten terms
SciPost Phys. 10, 061 (2021) [Crossref] -
Furusawa et al., Anomaly-induced edge currents in hydrodynamics with parity anomaly
Phys. Rev. D 104, 125021 (2021) [Crossref] -
Robbins et al., (−1)
-form symmetries and anomaly shifting from symmetry topological field theory
Phys. Rev. D 112, 105020 (2025) [Crossref] -
Honda et al., Negative string tension of a higher-charge Schwinger model via digital quantum simulation
2022, 033B01 (2022) [Crossref] -
Heidenreich et al., The Weak Gravity Conjecture and axion strings
J. High Energ. Phys. 2021, 4 (2021) [Crossref] -
Moradi et al., Topological holography: Towards a unification of Landau and beyond-Landau physics
SciPost Phys. Core 6, 066 (2023) [Crossref] -
Armas et al., Higher-group global symmetry and the bosonic M5 brane
J. High Energ. Phys. 2024, 3 (2024) [Crossref] -
Cheng et al., Lieb-Schultz-Mattis, Luttinger, and 't Hooft - anomaly matching in lattice systems
SciPost Phys. 15, 051 (2023) [Crossref] -
Choi et al., Non-invertible Gauss law and axions
J. High Energ. Phys. 2023, 67 (2023) [Crossref] -
Honda et al., Topological aspects of 4D Abelian lattice gauge theories with the θ parameter
J. High Energ. Phys. 2020, 154 (2020) [Crossref] -
Gorantla et al., A modified Villain formulation of fractons and other exotic theories
62, 102301 (2021) [Crossref] -
Lin et al., Decomposition and (non-invertible) (−1)-form symmetries from the symmetry topological field theory
J. High Energ. Phys. 2025, 131 (2025) [Crossref] -
Heidenreich et al., Non-invertible global symmetries and completeness of the spectrum
J. High Energ. Phys. 2021, 203 (2021) [Crossref] -
Kapustin et al., Higher-dimensional generalizations of Berry curvature
Phys. Rev. B 101, 235130 (2020) [Crossref] -
Cherman et al., Lifetimes of near eternal false vacua
Phys. Rev. D 103, 105012 (2021) [Crossref] -
Hsieh et al., Anomaly Inflow and p-Form Gauge Theories
Commun. Math. Phys. 391, 495 (2022) [Crossref] -
Bah et al., Non-invertible symmetries, brane dynamics, and tachyon condensation
J. High Energ. Phys. 2024, 117 (2024) [Crossref] -
Hayashi et al., Non-invertible self-duality defects of Cardy-Rabinovici model and mixed gravitational anomaly
J. High Energ. Phys. 2022, 36 (2022) [Crossref] -
Choi et al., Higher Berry phase of fermions and index theorem
J. High Energ. Phys. 2022, 22 (2022) [Crossref] -
Burnell et al., Anomaly inflow for subsystem symmetries
Phys. Rev. B 106, 085113 (2022) [Crossref] -
Bah et al., Discrete and higher-form symmetries in SCFTs from wrapped M5-branes
J. High Energ. Phys. 2021, 196 (2021) [Crossref] -
Kitano et al., Vector mesons on the wall
J. High Energ. Phys. 2021, 23 (2021) [Crossref] -
Debray et al., The anomaly that was not meant IIB
Fortschritte der Physik 70, 2100168 (2022) [Crossref] -
Jacobson, Gauging C on the lattice
J. High Energ. Phys. 2025, 138 (2025) [Crossref] -
Dedushenko, Remarks on Berry connection in QFT, anomalies, and applications
SciPost Phys. 15, 167 (2023) [Crossref] -
Tanizaki et al., Center vortex and confinement in Yang–Mills theory and QCD with anomaly-preserving compactifications
2022, 04A108 (2022) [Crossref] -
Hsin et al., On topology of the moduli space of gapped Hamiltonians for topological phases
64, 041901 (2023) [Crossref] -
Dumitrescu et al., Higgs-confinement transitions in QCD from symmetry protected topological phases
SciPost Phys. 17, 093 (2024) [Crossref] -
Lu, Nonlinear sigma model description of deconfined quantum criticality in arbitrary dimensions
SciPost Phys. Core 6, 047 (2023) [Crossref] -
Sugeno et al., Large θ angle in two-dimensional large N $$ {\mathbbm{CP}}^{N-1} $$ model
J. High Energ. Phys. 2025, 232 (2025) [Crossref] -
Samajdar et al., Enhanced thermal Hall effect in the square-lattice Néel state
Nat. Phys. 15, 1290 (2019) [Crossref] -
McGreevy, Generalized Symmetries in Condensed Matter
Annu. Rev. Condens. Matter Phys. 14, 57 (2023) [Crossref] -
Rudelius, A symmetry-centric perspective on the geometry of the string landscape and the swampland
Int. J. Mod. Phys. D 33, 2441003 (2024) [Crossref] -
Saito, Wess-Zumino-Witten terms of Sp QCD by bordism theory
J. High Energ. Phys. 2024, 99 (2024) [Crossref] -
Kanno et al., Anomaly and superconnection
2022, 013B02 (2022) [Crossref] -
Wen et al., Flow of higher Berry curvature and bulk-boundary correspondence in parametrized quantum systems
Phys. Rev. B 108, 125147 (2023) [Crossref] -
Tachikawa et al., Topological Modular Forms and the Absence of All Heterotic Global Anomalies
Commun. Math. Phys. 402, 1585 (2023) [Crossref] -
Fujimori et al., Quantum phase transition and resurgence: Lessons from three-dimensional $\mathcal{N}=4$ supersymmetric quantum electrodynamics
2021, 103B04 (2021) [Crossref] -
Okada et al., On anomalies and fermionic unitary operators
J. High Energ. Phys. 2025, 122 (2025) [Crossref] -
Fukuda et al., Witten effect, anomaly inflow, and charge teleportation
J. High Energ. Phys. 2021, 119 (2021) [Crossref] -
Furusawa et al., Global anomaly matching in the higher-dimensional
CPN−1
model
Phys. Rev. B 101, 155113 (2020) [Crossref] -
Ji et al., Topological transition on the conformal manifold
Phys. Rev. Research 2, 033317 (2020) [Crossref] -
Antinucci et al., Symmetries and topological operators, on average
SciPost Phys. 15, 125 (2023) [Crossref] -
Rudelius et al., Fractons with twisted boundary conditions and their symmetries
Phys. Rev. B 103, 195113 (2021) [Crossref] -
Csáki et al., Spontaneous CP breaking in a QCD-like theory
J. High Energ. Phys. 2024, 66 (2024) [Crossref] -
Cherman et al., Universal Deformations
SciPost Phys. 12, 116 (2022) [Crossref] -
Bah et al., M5-brane sources, holography, and Argyres-Douglas theories
J. High Energ. Phys. 2021, 140 (2021) [Crossref] -
Yu, Symmetries and anomalies of (1+1)d theories: 2-groups and symmetry fractionalization
J. High Energ. Phys. 2021, 61 (2021) [Crossref] -
Kapec et al., Matrix ensembles with global symmetries and ’t Hooft anomalies from 2d gauge theory
J. High Energ. Phys. 2020, 186 (2020) [Crossref] -
Else et al., Quantum Many-Body Topology of Quasicrystals
Phys. Rev. X 11, 041051 (2021) [Crossref] -
Anber et al., Generalized ’t Hooft anomalies on non-spin manifolds
J high energy phys 2020, 97 (2020) [Crossref] -
Heidenreich et al., Non-standard axion electrodynamics and the dual Witten effect
J. High Energ. Phys. 2024, 120 (2024) [Crossref] -
Nguyen et al., Semi-Abelian gauge theories, non-invertible symmetries, and string tensions beyond N-ality
J. High Energ. Phys. 2021, 238 (2021) [Crossref] -
Oğuz, Topological manipulations on ℝ symmetries of Abelian gauge theory
J. High Energ. Phys. 2025, 135 (2025) [Crossref] -
Genolini et al., Evidence for a non-supersymmetric 5d CFT from deformations of 5d SU(2) SYM
J. High Energ. Phys. 2020, 58 (2020) [Crossref] -
Karasik, On anomalies and gauging of U(1) non-invertible symmetries in 4d QED
SciPost Phys. 15, 002 (2023) [Crossref] -
Seiberg et al., Majorana chain and Ising model - (non-invertible) translations, anomalies, and emanant symmetries
SciPost Phys. 16, 064 (2024) [Crossref] -
Damia et al., Continuous generalized symmetries in three dimensions
J. High Energ. Phys. 2023, 164 (2023) [Crossref] -
Grassi et al., Super-higher-form symmetries
J. High Energ. Phys. 2025, 169 (2025) [Crossref] -
Genolini et al., Instantons, symmetries and anomalies in five dimensions
J. High Energ. Phys. 2021, 188 (2021) [Crossref] -
Brennan, Constraints on symmetry-preserving gapped phases from coupling constant anomalies
Phys. Rev. D 110, L041701 (2024) [Crossref] -
Hayashi et al., Non-supersymmetric duality cascade of QCD(BF) via semiclassics on ℝ2 × T2 with the baryon-’t Hooft flux
J. High Energ. Phys. 2024, 33 (2024) [Crossref] -
Kan et al., Higher-group structure in lattice Abelian gauge theory under instanton-sum modification
Eur. Phys. J. C 83, 481 (2023) [Crossref] -
Gukov et al., Generalized global symmetries of T[M] theories. Part I
J. High Energ. Phys. 2021, 232 (2021) [Crossref] -
Else, Topological Goldstone phases of matter
Phys. Rev. B 104, 115129 (2021) [Crossref] -
Hidaka et al., Global 4-group symmetry and ’t Hooft anomalies in topological axion electrodynamics
2022, 04A109 (2022) [Crossref] -
Ohyama et al., Discrete higher Berry phases and matrix product states
Phys. Rev. B 110, 035114 (2024) [Crossref] -
Delmastro et al., Infrared phases of 2d QCD
J. High Energ. Phys. 2023, 157 (2023) [Crossref] -
Aminov, Spontaneous symmetry breaking in pure 2D Yang-Mills theory
Phys. Rev. D 101, 105017 (2020) [Crossref] -
Sharon, Global aspects of spaces of vacua
J. High Energ. Phys. 2020, 83 (2020) [Crossref] -
Ohyama et al., Higher Berry phase from projected entangled pair states in (
2+1
) dimensions
Phys. Rev. B 111, 045112 (2025) [Crossref] -
Córdova et al., Generalized symmetry breaking scales and weak gravity conjectures
J. High Energ. Phys. 2022, 154 (2022) [Crossref]
Authors / Affiliations: mappings to Contributors and Organizations
See all Organizations.- 1 Clay Córdova,
- 2 Daniel Freed,
- 3 Ho Tat Lam,
- 1 Nathan Seiberg
- 1 Institute for Advanced Study [IAS]
- 2 The University of Texas at Austin [UT Austin]
- 3 Princeton University
