Efficient numerical simulations with Tensor Networks: Tensor Network Python (TeNPy)
Johannes Hauschild, Frank Pollmann
SciPost Phys. Lect. Notes 5 (2018) · published 8 October 2018
- doi: 10.21468/SciPostPhysLectNotes.5
- Submissions/Reports
-
Abstract
Tensor product state (TPS) based methods are powerful tools to efficiently simulate quantum many-body systems in and out of equilibrium. In particular, the one-dimensional matrix-product (MPS) formalism is by now an established tool in condensed matter theory and quantum chemistry. In these lecture notes, we combine a compact review of basic TPS concepts with the introduction of a versatile tensor library for Python (TeNPy) [https://github.com/tenpy/tenpy]. As concrete examples, we consider the MPS based time-evolving block decimation and the density matrix renormalization group algorithm. Moreover, we provide a practical guide on how to implement abelian symmetries (e.g., a particle number conservation) to accelerate tensor operations.
TY - JOUR
PB - SciPost Foundation
DO - 10.21468/SciPostPhysLectNotes.5
TI - Efficient numerical simulations with Tensor Networks: Tensor Network Python (TeNPy)
PY - 2018/10/08
UR - https://scipost.org/SciPostPhysLectNotes.5
JF - SciPost Physics Lecture Notes
JA - SciPost Phys. Lect. Notes
SP - 5
A1 - Hauschild, Johannes
AU - Pollmann, Frank
AB - Tensor product state (TPS) based methods are powerful tools to efficiently
simulate quantum many-body systems in and out of equilibrium. In particular,
the one-dimensional matrix-product (MPS) formalism is by now an established
tool in condensed matter theory and quantum chemistry. In these lecture notes,
we combine a compact review of basic TPS concepts with the introduction of a
versatile tensor library for Python (TeNPy) [https://github.com/tenpy/tenpy].
As concrete examples, we consider the MPS based time-evolving block decimation
and the density matrix renormalization group algorithm. Moreover, we provide a
practical guide on how to implement abelian symmetries (e.g., a particle number
conservation) to accelerate tensor operations.
ER -
@Article{10.21468/SciPostPhysLectNotes.5,
title={{Efficient numerical simulations with Tensor Networks: Tensor Network Python (TeNPy)}},
author={Johannes Hauschild and Frank Pollmann},
journal={SciPost Phys. Lect. Notes},
pages={5},
year={2018},
publisher={SciPost},
doi={10.21468/SciPostPhysLectNotes.5},
url={https://scipost.org/10.21468/SciPostPhysLectNotes.5},
}
Cited by 106

-
Rodriguez-Nieva et al., Transverse instability and universal decay of spin spiral order in the Heisenberg model
Phys. Rev. B 105, L060302 (2022) [Crossref] -
Roy et al., The quantum sine-Gordon model with quantum circuits
Nuclear Physics B 968, 115445 115445 (2021) [Crossref] -
Kottmann et al., Supersolid-superfluid phase separation in the extended Bose-Hubbard model
Phys. Rev. B 104, 174514 (2021) [Crossref] -
Coissard et al., Imaging tunable quantum Hall broken-symmetry orders in graphene
Nature 605, 51 (2022) [Crossref] -
Wouters et al., Phase diagram of an extended parafermion chain
SciPost Phys. Core 5, 008 (2022) [Crossref] -
Morera et al., Quantum droplets of bosonic mixtures in a one-dimensional optical lattice
Phys. Rev. Research 2, 022008 (2020) [Crossref] -
Cookmeyer et al., Four-Spin Terms and the Origin of the Chiral Spin Liquid in Mott Insulators on the Triangular Lattice
Phys. Rev. Lett. 127, 087201 (2021) [Crossref] -
[undetermined], Publisher’s Note
Annals of Physics 431, 168552 168552 (2021) [Crossref] -
Villa et al., Quench spectroscopy of a disordered quantum system
Phys. Rev. A 104, L021301 (2021) [Crossref] -
Andrews et al., Stability, phase transitions, and numerical breakdown of fractional Chern insulators in higher Chern bands of the Hofstadter model
Phys. Rev. B 104, 125107 (2021) [Crossref] -
Li et al., Numerical assessment for accuracy and GPU acceleration of TD-DMRG time evolution schemes
J. Chem. Phys. 152, 024127 (2020) [Crossref] -
Iraola et al., Towards a topological quantum chemistry description of correlated systems: The case of the Hubbard diamond chain
Phys. Rev. B 104, 195125 (2021) [Crossref] -
Roy et al., Entanglement Hamiltonian of the 1 + 1-dimensional free, compactified boson conformal field theory
J. Stat. Mech. 2020, 083104 (2020) [Crossref] -
Bibo et al., Fractional corner charges in a two-dimensional superlattice Bose-Hubbard model
Phys. Rev. B 102, 041126 (2020) [Crossref] -
Morera et al., Universal Dimerized Quantum Droplets in a One-Dimensional Lattice
Phys. Rev. Lett. 126, 023001 (2021) [Crossref] -
Ge et al., Quantum simulation of lattice gauge theories on superconducting circuits: Quantum phase transition and quench dynamics
Chinese Phys. B 31, 020304 (2021) [Crossref] -
Jin et al., Matrix product states for Hartree-Fock-Bogoliubov wave functions
Phys. Rev. B 105, L081101 (2022) [Crossref] -
Devakul et al., Quantum Anomalous Hall Effect from Inverted Charge Transfer Gap
Phys. Rev. X 12, 021031 (2022) [Crossref] -
Huang et al., Coupled dimer and bond-order-wave order in the quarter-filled one-dimensional Kondo lattice model
Phys. Rev. B 102, 245143 (2020) [Crossref] -
Roy et al., Quantum phases of a one-dimensional Majorana-Bose-Hubbard model
Phys. Rev. B 101, 075419 (2020) [Crossref] -
Dong et al., Spin-1 Kitaev-Heisenberg model on a honeycomb lattice
Phys. Rev. B 102, 121102 (2020) [Crossref] -
Scholl et al., Quantum simulation of 2D antiferromagnets with hundreds of Rydberg atoms
Nature 595, 233 (2021) [Crossref] -
Wang et al., Calculating Rényi entropies with neural autoregressive quantum states
Phys. Rev. A 102, 062413 (2020) [Crossref] -
Stéphan, Free fermions at the edge of interacting systems
SciPost Phys. 6, 057 (2019) [Crossref] -
Zhang et al., SU(4) Chiral Spin Liquid, Exciton Supersolid, and Electric Detection in Moiré Bilayers
Phys. Rev. Lett. 127, 247701 (2021) [Crossref] -
Tang et al., Measurement-induced phase transition: A case study in the nonintegrable model by density-matrix renormalization group calculations
Phys. Rev. Research 2, 013022 (2020) [Crossref] -
Rigobello et al., Entanglement generation in
(1+1)D
QED scattering processes
Phys. Rev. D 104, 114501 (2021) [Crossref] -
Doggen et al., Many-body localization in a tilted potential in two dimensions
Phys. Rev. B 105, 134204 (2022) [Crossref] -
Tada, Quantum phase transition and criticality in quasi-one-dimensional spinless Dirac fermions
Phys. Rev. B 100, 125145 (2019) [Crossref] -
Haldar et al., Signatures of Quantum Phase Transitions after Quenches in Quantum Chaotic One-Dimensional Systems
Phys. Rev. X 11, 031062 (2021) [Crossref] -
Kuno et al., Topological pump and bulk-edge-correspondence in an extended Bose-Hubbard model
Phys. Rev. B 104, 125146 (2021) [Crossref] -
Kottmann et al., Variational quantum anomaly detection: Unsupervised mapping of phase diagrams on a physical quantum computer
Phys. Rev. Research 3, 043184 (2021) [Crossref] -
You et al., Higher-order entanglement and many-body invariants for higher-order topological phases
Phys. Rev. Research 2, 033192 (2020) [Crossref] -
Wybo et al., Entanglement dynamics of a many-body localized system coupled to a bath
Phys. Rev. B 102, 064304 (2020) [Crossref] -
Araz et al., Quantum-inspired event reconstruction with Tensor Networks: Matrix Product States
J. High Energ. Phys. 2021, 112 (2021) [Crossref] -
Cataldi et al., Hilbert curve vs Hilbert space: exploiting fractal 2D covering to increase tensor network efficiency
Quantum 5, 556 556 (2021) [Crossref] -
Wang et al., Measurable signatures of bosonic fractional Chern insulator states and their fractional excitations in a quantum-gas microscope
SciPost Phys. 12, 095 (2022) [Crossref] -
González-Cuadra, Higher-order topological quantum paramagnets
Phys. Rev. B 105, L020403 (2022) [Crossref] -
Kottmann et al., Unsupervised Phase Discovery with Deep Anomaly Detection
Phys. Rev. Lett. 125, 170603 (2020) [Crossref] -
González-Cuadra et al., Robust Topological Order in Fermionic
Z2
Gauge Theories: From Aharonov-Bohm Instability to Soliton-Induced Deconfinement
Phys. Rev. X 10, 041007 (2020) [Crossref] -
Hartmann et al., Intersublattice entanglement entropy as an extensive property in antiferromagnets
Phys. Rev. B 104, 064436 (2021) [Crossref] -
Huang et al., Quantum phase diagram and chiral spin liquid in the extended spin-
12
honeycomb XY model
Phys. Rev. B 103, L041108 (2021) [Crossref] -
Villa et al., Finding the phase diagram of strongly correlated disordered bosons using quantum quenches
Phys. Rev. A 104, 023323 (2021) [Crossref] -
Koepsell et al., Microscopic evolution of doped Mott insulators from polaronic metal to Fermi liquid
Science 374, 82 (2021) [Crossref] -
Li et al., Cluster dynamics in two-dimensional lattice gases with intersite interactions
Phys. Rev. A 103, 043331 (2021) [Crossref] -
Lerose et al., Scaling of temporal entanglement in proximity to integrability
Phys. Rev. B 104, 035137 (2021) [Crossref] -
Hauschild et al., Finding purifications with minimal entanglement
Phys. Rev. B 98, 235163 (2018) [Crossref] -
Borla et al., Confined Phases of One-Dimensional Spinless Fermions Coupled to
Z2
Gauge Theory
Phys. Rev. Lett. 124, 120503 (2020) [Crossref] -
Kuno et al., Plateau transitions of a spin pump and bulk-edge correspondence
Phys. Rev. B 104, 045113 (2021) [Crossref] -
Lerose et al., Influence Matrix Approach to Many-Body Floquet Dynamics
Phys. Rev. X 11, 021040 (2021) [Crossref] -
Robertson et al., Quenches to the critical point of the three-state Potts model: Matrix product state simulations and conformal field theory
Phys. Rev. B 105, 195103 (2022) [Crossref] -
Klein et al., Interacting stochastic topology and Mott transition from light response
Phys. Rev. B 103, 035114 (2021) [Crossref] -
Fraxanet et al., Topological Quantum Critical Points in the Extended Bose-Hubbard Model
Phys. Rev. Lett. 128, 043402 (2022) [Crossref] -
Ronetti et al., Fractional spin excitations and conductance in the spiral-staircase Heisenberg ladder
Phys. Rev. B 105, 134413 (2022) [Crossref] -
Soejima et al., Efficient simulation of moiré materials using the density matrix renormalization group
Phys. Rev. B 102, 205111 (2020) [Crossref] -
Huang et al., Coexistence of non-Abelian chiral spin liquid and magnetic order in a spin-1 antiferromagnet
Phys. Rev. B 105, 155104 (2022) [Crossref] -
Tada, Quantum criticality of magnetic catalysis in two-dimensional correlated Dirac fermions
Phys. Rev. Research 2, 033363 (2020) [Crossref] -
Bohrdt et al., Dominant Fifth-Order Correlations in Doped Quantum Antiferromagnets
Phys. Rev. Lett. 126, 026401 (2021) [Crossref] -
González-Cuadra et al., Symmetry-breaking topological insulators in the
Z2
Bose-Hubbard model
Phys. Rev. B 99, 045139 (2019) [Crossref] -
González-Cuadra et al., Dynamical Solitons and Boson Fractionalization in Cold-Atom Topological Insulators
Phys. Rev. Lett. 125, 265301 (2020) [Crossref] -
Wang et al., Robust and ultrafast state preparation by ramping artificial gauge potentials
New J. Phys. 23, 063017 (2021) [Crossref] -
Bello et al., Spin Many-Body Phases in Standard- and Topological-Waveguide QED Simulators
PRX Quantum 3, 010336 (2022) [Crossref] -
Morera et al., Entanglement entropy in low-energy field theories at a finite chemical potential
Phys. Rev. Research 2, 033016 (2020) [Crossref] -
Grusdt et al., Microscopic spinon-chargon theory of magnetic polarons in the
t−J
model
Phys. Rev. B 99, 224422 (2019) [Crossref] -
González-Cuadra et al., Rotor Jackiw-Rebbi Model: A Cold-Atom Approach to Chiral Symmetry Restoration and Charge Confinement
PRX Quantum 1, 020321 (2020) [Crossref] -
Jones et al., Skeleton of matrix-product-state-solvable models connecting topological phases of matter
Phys. Rev. Research 3, 033265 (2021) [Crossref] -
Parker et al., Local matrix product operators: Canonical form, compression, and control theory
Phys. Rev. B 102, 035147 (2020) [Crossref] -
Tsitsishvili et al., Phase diagram of Rydberg-dressed atoms on two-leg square ladders: Coupling supersymmetric conformal field theories on the lattice
Phys. Rev. B 105, 155159 (2022) [Crossref] -
Chung et al., Tunable Single-Ion Anisotropy in Spin-1 Models Realized with Ultracold Atoms
Phys. Rev. Lett. 126, 163203 (2021) [Crossref] -
Wouters et al., Interrelations among frustration-free models via Witten's conjugation
SciPost Phys. Core 4, 027 (2021) [Crossref] -
East et al., AKLT-States as ZX-Diagrams: Diagrammatic Reasoning for Quantum States
PRX Quantum 3, 010302 (2022) [Crossref] -
Repellin et al., Ferromagnetism in Narrow Bands of Moiré Superlattices
Phys. Rev. Lett. 124, 187601 (2020) [Crossref] -
Štrkalj et al., Many-body localization in the interpolating Aubry-André-Fibonacci model
Phys. Rev. Research 3, 033257 (2021) [Crossref] -
Kuno et al., Interaction-induced topological charge pump
Phys. Rev. Research 2, 042024 (2020) [Crossref] -
Villa et al., Local quench spectroscopy of many-body quantum systems
Phys. Rev. A 102, 033337 (2020) [Crossref] -
Slagle, Fast tensor disentangling algorithm
SciPost Phys. 11, 056 (2021) [Crossref] -
Bohrdt et al., Dynamical formation of a magnetic polaron in a two-dimensional quantum antiferromagnet
New J. Phys. 22, 123023 (2020) [Crossref] -
Scherg et al., Observing non-ergodicity due to kinetic constraints in tilted Fermi-Hubbard chains
Nat Commun 12, 4490 (2021) [Crossref] -
Sous et al., Phonon-induced disorder in dynamics of optically pumped metals from nonlinear electron-phonon coupling
Nat Commun 12, 5803 (2021) [Crossref] -
de Felice et al., DisCoPy: Monoidal Categories in Python
Electron. Proc. Theor. Comput. Sci. 333, 183 (2021) [Crossref] -
Kloss et al., Spin transport in disordered long-range interacting spin chain
Phys. Rev. B 102, 060201 (2020) [Crossref] -
Kishony et al., Converting electrons into emergent fermions at a superconductor–Kitaev spin liquid interface
Phys. Rev. B 104, 235118 (2021) [Crossref] -
Rai et al., Bulk topological signatures of a quasicrystal
Phys. Rev. B 104, 184202 (2021) [Crossref] -
Jepsen et al., Transverse Spin Dynamics in the Anisotropic Heisenberg Model Realized with Ultracold Atoms
Phys. Rev. X 11, 041054 (2021) [Crossref] -
González-Cuadra et al., Intertwined topological phases induced by emergent symmetry protection
Nat Commun 10, 2694 (2019) [Crossref] -
Seifert et al., Fractionalized Fermionic Quantum Criticality in Spin-Orbital Mott Insulators
Phys. Rev. Lett. 125, 257202 (2020) [Crossref] -
Denner et al., Efficient learning of a one-dimensional density functional theory
Phys. Rev. Research 2, 033388 (2020) [Crossref] -
Sonner et al., Characterizing many-body localization via exact disorder-averaged quantum noise
Phys. Rev. B 105, L020203 (2022) [Crossref] -
Bohrdt et al., Strong pairing in mixed-dimensional bilayer antiferromagnetic Mott insulators
Nat. Phys., (2022) [Crossref] -
Bohrdt et al., Rotational Resonances and Regge-like Trajectories in Lightly Doped Antiferromagnets
Phys. Rev. Lett. 127, 197004 (2021) [Crossref] -
Hubig et al., Evaluation of time-dependent correlators after a local quench in iPEPS: hole motion in the t-J model
SciPost Phys. 8, 021 (2020) [Crossref] -
Thorngren et al., Intrinsically gapless topological phases
Phys. Rev. B 104, 075132 (2021) [Crossref] -
Quella, Symmetry-protected topological phases beyond groups: The
q
-deformed bilinear-biquadratic spin chain
Phys. Rev. B 103, 054404 (2021) [Crossref] -
Lee et al., Bell-Type Correlation at Quantum Phase Transitions in Spin-1 Chain
Entropy 22, 1282 (2020) [Crossref] -
Andrews et al., Abelian topological order of
ν=2/5
and
3/7
fractional quantum Hall states in lattice models
Phys. Rev. B 103, 075132 (2021) [Crossref] -
He et al., Conductance of correlated many-fermion systems from charge fluctuations
Phys. Rev. B 105, 165120 (2022) [Crossref] -
Christandl et al., Optimization at the boundary of the tensor network variety
Phys. Rev. B 103, 195139 (2021) [Crossref] -
Borla et al., Gauging the Kitaev chain
SciPost Phys. 10, 148 (2021) [Crossref] -
González-Cuadra et al., Zn
solitons in intertwined topological phases
Phys. Rev. B 102, 245137 (2020) [Crossref] -
Tschirhart et al., Phase diagram of spin-1 chains with Dzyaloshinskii-Moriya interaction
Phys. Rev. B 100, 195111 (2019) [Crossref] -
Bañuls et al., From spin chains to real-time thermal field theory using tensor networks
Phys. Rev. Research 2, 033301 (2020) [Crossref] -
Kiese et al., TMDs as a platform for spin liquid physics: A strong coupling study of twisted bilayer WSe2
APL Materials 10, 031113 (2022) [Crossref] -
Pang et al.,
, 1 (2020) [Crossref] -
Vovrosh et al., Confinement-induced impurity states in spin chains
Phys. Rev. B 105, L100301 (2022) [Crossref] -
Mahyaeh et al., Phase diagram of the $\mathbb{Z}_3$-Fock parafermion chain with pair hopping
SciPost Phys. Core 3, 011 (2020) [Crossref] -
Doggen et al., Stark many-body localization: Evidence for Hilbert-space shattering
Phys. Rev. B 103, L100202 (2021) [Crossref]