Klaas Gunst, Dimitri Van Neck, Peter Andreas Limacher, Stijn De Baerdemacker
SciPost Chem. 1, 001 (2021) ·
published 15 January 2021
|
· pdf
We employ tensor network methods for the study of the seniority quantum number -- defined as the number of unpaired electrons in a many-body wave function -- in molecular systems. Seniority-zero methods recently emerged as promising candidates to treat strong static correlations in molecular systems, but are prone to deficiencies related to dynamical correlation and dispersion. We systematically resolve these deficiencies by increasing the allowed seniority number using tensor network methods. In particular, we investigate the number of unpaired electrons needed to correctly describe the binding of the neon and nitrogen dimer and the $D_{6h}$ symmetry of benzene.
SciPost Chem. 1, 002 (2021) ·
published 18 May 2021
|
· pdf
A relativistic density-functional theory based on a Fock-space effective quantum-electrodynamics (QED) Hamiltonian using the Coulomb or Coulomb-Breit two-particle interaction is developed. This effective QED theory properly includes the effects of vacuum polarization through the creation of electron-positron pairs but does not include explicitly the photon degrees of freedom. It is thus a more tractable alternative to full QED for atomic and molecular calculations. Using the constrained-search formalism, a Kohn-Sham scheme is formulated in a quite similar way to non-relativistic density-functional theory, and some exact properties of the involved density functionals are studied, namely charge-conjugation symmetry and uniform coordinate scaling. The usual no-pair Kohn-Sham scheme is obtained as a well-defined approximation to this relativistic density-functional theory.
SciPost Chem. 1, 003 (2021) ·
published 1 October 2021
|
· pdf
We show how fast semiempirical QM methods can be used to significantly decrease the CPU requirements for automated reaction mechanism discovery, using two different method for generating reaction products: graph-based systematic enumeration of all possible products and the meta-dynamics approach by Grimme (J. Chem. Theory. Comput. 2019, 15, 2847). We test the two approaches on the low-barrier reactions of 3-hydroperoxypropanal, which have been studied by a large variety of reaction discovery approaches and therefore provides a good benchmark. By using PM3 and GFN2-xTB for reaction energy and barrier screening the systematic approach identifies 64 reactions (out of 27,577 possible reactions) for DFT refinement, which in turn identifies the three reactions with lowest barriers plus a previously undiscovered reaction. With optimised hyperparameters meta-dynamics followed by PM3/GFN2-xTB-based screening identifies 15 reactions for DFT refinement, which in turn identifies the three reactions with lowest barrier. The number of DFT refinements can be further reduced to as little as six for both approaches by first verifying the transition states with GFN1-xTB. The main conclusion is that the semiempirical methods are accurate and fast enough to automatically identify promising candidates for DFT refinement for the low barrier reactions of 3-hydroperoxypropanal in about 15-30 minutes using relatively modest computational resources.