Mauricio Rodríguez-Mayorga, Klaas J.H. Giesbertz, Lucas Visscher
SciPost Chem. 1, 004 (2022) ·
published 10 June 2022
|
· pdf
As a new approach to efficiently describe correlation effects in the relativistic quantum world we propose to consider reduced density matrix functional theory, where the key quantity is the first-order reduced density matrix (1-RDM). In this work, we first introduce the theoretical foundations to extend the applicability of this theory to the relativistic domain. Then, using the so-called no-pair (np) approximation, we arrive at an approximate treatment of the relativistic effects by focusing on electronic wavefunctions and neglecting explicit contributions from positrons. Within the np approximation the theory becomes similar to the nonrelativistic case, with as unknown only the functional that describes the electron-electron interactions in terms of the 1-RDM. This requires the construction of functional approximations, and we therefore also present the relativistic versions of some common RDMFT approximations that are used in the nonrelativistic context and discuss their properties.
SciPost Chem. 1, 005 (2022) ·
published 17 June 2022
|
· pdf
We present here an open-source Julia library for the topological identification of crystalline materials, with algorithmic and computational improvements over the previously available software in the field, resulting in a speed increase of one order of magnitude. This new algorithm and implementation can therefore be used at large scale in high-throughput screening methodologies. We have validated and benchmarked CrystalNets.jl against a diverse set of crystal databases, covering in particular metal–organic frameworks, aluminophosphates, zeolites, and other inorganic compounds.