Exotic $\mathbb{Z}_N$ symmetries, duality, and fractons in 3+1-dimensional quantum field theory
Nathan Seiberg, Shu-Heng Shao
SciPost Phys. 10, 003 (2021) · published 8 January 2021
- doi: 10.21468/SciPostPhys.10.1.003
- Submissions/Reports
Abstract
Following our earlier analyses of nonstandard continuum quantum field theories, we study here gapped systems in 3+1 dimensions, which exhibit fractonic behavior. In particular, we present three dual field theory descriptions of the low-energy physics of the X-cube model. A key aspect of our constructions is the use of discontinuous fields in the continuum field theory. Spacetime is continuous, but the fields are not.
TY - JOUR
PB - SciPost Foundation
DO - 10.21468/SciPostPhys.10.1.003
TI - Exotic $\mathbb{Z}_N$ symmetries, duality, and fractons in 3+1-dimensional quantum field theory
PY - 2021/01/08
UR - https://scipost.org/SciPostPhys.10.1.003
JF - SciPost Physics
JA - SciPost Phys.
VL - 10
IS - 1
SP - 003
A1 - Seiberg, Nathan
AU - Shao, Shu-Heng
AB - Following our earlier analyses of nonstandard continuum quantum field theories, we study here gapped systems in 3+1 dimensions, which exhibit fractonic behavior. In particular, we present three dual field theory descriptions of the low-energy physics of the X-cube model. A key aspect of our constructions is the use of discontinuous fields in the continuum field theory. Spacetime is continuous, but the fields are not.
ER -
@Article{10.21468/SciPostPhys.10.1.003,
title={{Exotic $\mathbb{Z}_N$ symmetries, duality, and fractons in 3+1-dimensional quantum field theory}},
author={Nathan Seiberg and Shu-Heng Shao},
journal={SciPost Phys.},
volume={10},
pages={003},
year={2021},
publisher={SciPost},
doi={10.21468/SciPostPhys.10.1.003},
url={https://scipost.org/10.21468/SciPostPhys.10.1.003},
}
Cited by 71
-
Fontana et al., Field Theories for type-II fractons
SciPost Phys. 12, 064 (2022) [Crossref] -
Lake et al., Bose-Luttinger liquids
Phys. Rev. B 104, 014517 (2021) [Crossref] -
Seiberg et al., Exotic symmetries, duality, and fractons in 2+1-dimensional quantum field theory
SciPost Phys. 10, 027 (2021) [Crossref] -
Cao et al., Symmetry TFT for subsystem symmetry
J. High Energ. Phys. 2024, 225 (2024) [Crossref] -
Li et al., Subsystem symmetries, critical Bose surface, and immobile excitations in an extended compass model
Phys. Rev. B 109, 214402 (2024) [Crossref] -
Hsin et al., Comments on foliated gauge theories and dualities in 3+1d
SciPost Phys. 11, 032 (2021) [Crossref] -
Fontana et al., Lattice Clifford fractons and their Chern-Simons-like theory
SciPost Phys. Core 4, 012 (2021) [Crossref] -
Delfino et al., Effective fractonic behavior in a two-dimensional exactly solvable spin liquid
SciPost Phys. 14, 002 (2023) [Crossref] -
Casini et al., On completeness and generalized symmetries in quantum field theory
Mod. Phys. Lett. A 36, 2130025 (2021) [Crossref] -
Nussinov et al., Theorem on extensive spectral degeneracy for systems with rigid higher symmetries in general dimensions
Phys. Rev. B 107, 045109 (2023) [Crossref] -
Chen et al., Fractonic superfluids. II. Condensing subdimensional particles
Phys. Rev. Research 3, 013226 (2021) [Crossref] -
Canossa et al., Exotic symmetry breaking properties of self-dual fracton spin models
Phys. Rev. Research 6, 013304 (2024) [Crossref] -
Cao et al., Generating lattice non-invertible symmetries
SciPost Phys. 17, 104 (2024) [Crossref] -
Lake et al., Subdimensional criticality: Condensation of lineons and planons in the X-cube model
Phys. Rev. B 104, 165121 (2021) [Crossref] -
Katsura et al., Spontaneously broken supersymmetric fracton phases with fermionic subsystem symmetries
J. High Energ. Phys. 2022, 72 (2022) [Crossref] -
Shimamura, Anomaly of subsystem symmetries in exotic and foliated BF theories
J. High Energ. Phys. 2024, 2 (2024) [Crossref] -
Shen et al., Fracton topological order at finite temperature
Phys. Rev. Research 4, L032008 (2022) [Crossref] -
Yamaguchi, Supersymmetric quantum field theory with exotic symmetry in 3+1 dimensions and fermionic fracton phases
2021, 063B04 (2021) [Crossref] -
Gorantla et al., Gapped lineon and fracton models on graphs
Phys. Rev. B 107, 125121 (2023) [Crossref] -
Fuji et al., Bridging three-dimensional coupled-wire models and cellular topological states: Solvable models for topological and fracton orders
Phys. Rev. Research 5, 043108 (2023) [Crossref] -
Duan et al., ℤN duality and parafermions revisited
J. High Energ. Phys. 2023, 206 (2023) [Crossref] -
Kibe et al., Stabilizer code model with noninvertible symmetries: Strange fractons, confinement, and noncommutative and non-Abelian fusion rules
Phys. Rev. D 110, 105019 (2024) [Crossref] -
Han et al., Realization of fractonic quantum phases in the breathing pyrochlore lattice
Phys. Rev. B 105, 235120 (2022) [Crossref] -
Ebisu et al., Foliated field theories and multipole symmetries
Phys. Rev. B 109, 165112 (2024) [Crossref] -
Fliss, Entanglement in the quantum Hall fluid of dipoles
SciPost Phys. 11, 052 (2021) [Crossref] -
Cao et al., Boson-fermion duality with subsystem symmetry
Phys. Rev. B 106, 075150 (2022) [Crossref] -
Ohmori et al., Foliated-exotic duality in fractonic BF theories
SciPost Phys. 14, 164 (2023) [Crossref] -
Spieler, Exotic field theories for (hybrid) fracton phases from imposing constraints in foliated field theory
J. High Energ. Phys. 2023, 178 (2023) [Crossref] -
Bertolini et al., Hall-like behaviour of higher rank Chern-Simons theory of fractons
J. High Energ. Phys. 2024, 232 (2024) [Crossref] -
Zhou et al., Detecting subsystem symmetry protected topological order through strange correlators
Phys. Rev. B 106, 214428 (2022) [Crossref] -
Razamat, Quivers and Fractons
Phys. Rev. Lett. 127, 141603 (2021) [Crossref] -
Gorantla et al., Global dipole symmetry, compact Lifshitz theory, tensor gauge theory, and fractons
Phys. Rev. B 106, 045112 (2022) [Crossref] -
Rayhaun et al., Higher-form subsystem symmetry breaking: Subdimensional criticality and fracton phase transitions
SciPost Phys. 15, 017 (2023) [Crossref] -
Tantivasadakarn et al., Hybrid fracton phases: Parent orders for liquid and nonliquid quantum phases
Phys. Rev. B 103, 245136 (2021) [Crossref] -
McGreevy, Generalized Symmetries in Condensed Matter
Annu. Rev. Condens. Matter Phys. 14, 57 (2023) [Crossref] -
Fazza et al., Lattice quantum Villain Hamiltonians: compact scalars, U(1) gauge theories, fracton models and quantum Ising model dualities
J. High Energ. Phys. 2023, 17 (2023) [Crossref] -
Nissinen, Field theory of higher-order topological crystalline response, generalized global symmetries and elasticity tetrads
Annals of Physics 447, 169139 169139 (2022) [Crossref] -
Zhang et al., Higher-Order Cellular Automata Generated Symmetry-Protected Topological Phases and Detection Through Multi Point Strange Correlators
PRX Quantum 5, 030342 (2024) [Crossref] -
Rudelius et al., Fractons with twisted boundary conditions and their symmetries
Phys. Rev. B 103, 195113 (2021) [Crossref] -
Li et al., Renormalization group analysis on emergence of higher rank symmetry and higher moment conservation
Phys. Rev. Research 3, 043176 (2021) [Crossref] -
Burnell et al., Anomaly inflow for subsystem symmetries
Phys. Rev. B 106, 085113 (2022) [Crossref] -
Zhu et al., Topological Fracton Quantum Phase Transitions by Tuning Exact Tensor Network States
Phys. Rev. Lett. 130, 216704 (2023) [Crossref] -
Casasola et al., Spontaneous symmetry breaking and frustrated phases
Phys. Rev. E 104, 034131 (2021) [Crossref] -
Honda et al., Scalar, fermionic and supersymmetric field theories with subsystem symmetries in d + 1 dimensions
J. High Energ. Phys. 2023, 188 (2023) [Crossref] -
Yuan et al., Quantum Hydrodynamics of Fractonic Superfluids with Lineon Condensate: From Navier–Stokes-Like Equations to Landau-Like Criterion
Chinese Phys. Lett. 39, 057101 (2022) [Crossref] -
Arias Tamargo et al., Discrete gauging and Hasse diagrams
SciPost Phys. 11, 026 (2021) [Crossref] -
Slagle, Foliated Quantum Field Theory of Fracton Order
Phys. Rev. Lett. 126, 101603 (2021) [Crossref] -
Gorantla et al., Fractons on graphs and complexity
Phys. Rev. B 106, 195139 (2022) [Crossref] -
Spieler, Non-invertible duality interfaces in field theories with exotic symmetries
J. High Energ. Phys. 2024, 42 (2024) [Crossref] -
Canossa et al., Hybrid symmetry breaking in classical spin models with subsystem symmetries
Phys. Rev. B 107, 054431 (2023) [Crossref] -
Lam, Classification of dipolar symmetry-protected topological phases: Matrix product states, stabilizer Hamiltonians, and finite tensor gauge theories
Phys. Rev. B 109, 115142 (2024) [Crossref] -
Luo, Gapped boundaries of
(3+1)
-dimensional topological order
Phys. Rev. B 107, 125425 (2023) [Crossref] -
Luo et al., Boundary theory of the X-cube model in the continuum
Phys. Rev. B 106, 195102 (2022) [Crossref] -
Moudgalya et al., Symmetries as Ground States of Local Superoperators: Hydrodynamic Implications
PRX Quantum 5, 040330 (2024) [Crossref] -
Hsin et al., Gapped interfaces in fracton models and foliated fields
J. High Energ. Phys. 2023, 89 (2023) [Crossref] -
Angus et al., Fractons, non-Riemannian geometry, and double field theory
Phys. Rev. Research 4, 033186 (2022) [Crossref] -
Gorantla et al., fcc lattice, checkerboards, fractons, and quantum field theory
Phys. Rev. B 103, 205116 (2021) [Crossref] -
Manoj et al., Arboreal topological and fracton phases
Phys. Rev. B 107, 165136 (2023) [Crossref] -
Gomes, An introduction to higher-form symmetries
SciPost Phys. Lect. Notes, 74 (2023) [Crossref] -
Gorantla et al., A modified Villain formulation of fractons and other exotic theories
62, 102301 (2021) [Crossref] -
Benedetti et al., Generalized symmetries of the graviton
J. High Energ. Phys. 2022, 45 (2022) [Crossref] -
Yamaguchi, Gapless edge modes in (4+1)-dimensional topologically massive tensor gauge theory and anomaly inflow for subsystem symmetry
2022, 033B08 (2022) [Crossref] -
Oh et al., Effective field theory of dipolar braiding statistics in two dimensions
Phys. Rev. B 106, 155150 (2022) [Crossref] -
Gromov et al., Colloquium
: Fracton matter
Rev. Mod. Phys. 96, 011001 (2024) [Crossref] -
Gorantla et al., (2+1)-dimensional compact Lifshitz theory, tensor gauge theory, and fractons
Phys. Rev. B 108, 075106 (2023) [Crossref] -
Cao et al., Subsystem non-invertible symmetry operators and defects
SciPost Phys. 15, 155 (2023) [Crossref] -
Zhou et al., Evolution of dynamical signature in the X-cube fracton topological order
Phys. Rev. Research 4, 033111 (2022) [Crossref] -
Han et al., Non-Fermi liquid induced by Bose metal with protected subsystem symmetries
Phys. Rev. B 106, L081106 (2022) [Crossref] -
Fontana et al., Boundary modes in the Chamon model
SciPost Phys. 15, 010 (2023) [Crossref] -
Gorantla et al., Low-energy limit of some exotic lattice theories and UV/IR mixing
Phys. Rev. B 104, 235116 (2021) [Crossref] -
Sullivan et al., Planar p-string condensation: Chiral fracton phases from fractional quantum Hall layers and beyond
Phys. Rev. B 103, 205301 (2021) [Crossref]
Authors / Affiliation: mappings to Contributors and Organizations
See all Organizations.
Funders for the research work leading to this publication