Superintegrable cellular automata and dual unitary gates from Yang-Baxter maps
Tamás Gombor, Balázs Pozsgay
SciPost Phys. 12, 102 (2022) · published 22 March 2022
- doi: 10.21468/SciPostPhys.12.3.102
- Submissions/Reports
Abstract
We consider one dimensional block cellular automata, where the local update rules are given by Yang-Baxter maps, which are set theoretical solutions of the Yang-Baxter equations. We show that such systems are superintegrable: they possess an exponentially large set of conserved local charges, such that the charge densities propagate ballistically on the chain. For these quantities we observe a complete absence of "operator spreading". In addition, the models can also have other local charges which are conserved only additively. We discuss concrete models up to local dimensions $N\le 4$, and show that they give rise to rich physical behaviour, including non-trivial scattering of particles and the coexistence of ballistic and diffusive transport. We find that the local update rules are classical versions of the "dual unitary gates" if the Yang-Baxter maps are non-degenerate. We discuss consequences of dual unitarity, and we also discuss a family of dual unitary gates obtained by a non-integrable quantum mechanical deformation of the Yang-Baxter maps.