Targeting multi-loop integrals with neural networks
Ramon Winterhalder, Vitaly Magerya, Emilio Villa, Stephen P. Jones, Matthias Kerner, Anja Butter, Gudrun Heinrich, Tilman Plehn
SciPost Phys. 12, 129 (2022) · published 13 April 2022
- doi: 10.21468/SciPostPhys.12.4.129
- Submissions/Reports
Abstract
Numerical evaluations of Feynman integrals often proceed via a deformation of the integration contour into the complex plane. While valid contours are easy to construct, the numerical precision for a multi-loop integral can depend critically on the chosen contour. We present methods to optimize this contour using a combination of optimized, global complex shifts and a normalizing flow. They can lead to a significant gain in precision.
Cited by 25
Authors / Affiliations: mappings to Contributors and Organizations
See all Organizations.- 1 2 Ramon Winterhalder,
- 3 Vitaly Magerya,
- 3 Emilio Villa,
- 4 Stephen Jones,
- 3 Matthias Kerner,
- 1 Anja Butter,
- 3 Gudrun Heinrich,
- 1 Tilman Plehn
- 1 Ruprecht-Karls-Universität Heidelberg / Heidelberg University
- 2 Université catholique de Louvain [UCL]
- 3 Karlsruher Institut für Technologie / Karlsruhe Institute of Technology [KIT]
- 4 Durham University
Funders for the research work leading to this publication
- Deutsche Forschungsgemeinschaft / German Research FoundationDeutsche Forschungsgemeinschaft [DFG]
- Fonds De La Recherche Scientifique - FNRS (FNRS) (through Organization: Fonds National de la Recherche Scientifique [FNRS])