Hamiltonian Truncation Effective Theory
Timothy Cohen, Kara Farnsworth, Rachel Houtz, Markus A. Luty
SciPost Phys. 13, 011 (2022) · published 4 August 2022
- doi: 10.21468/SciPostPhys.13.2.011
- Submissions/Reports
Abstract
Hamiltonian truncation is a non-perturbative numerical method for calculating observables of a quantum field theory. The starting point for this method is to truncate the interacting Hamiltonian to a finite-dimensional space of states spanned by the eigenvectors of the free Hamiltonian $H_0$ with eigenvalues below some energy cutoff $E_\text{max}$. In this work, we show how to treat Hamiltonian truncation systematically using effective field theory methodology. We define the finite-dimensional effective Hamiltonian by integrating out the states above $E_\text{max}$. The effective Hamiltonian can be computed by matching a transition amplitude to the full theory, and gives corrections order by order as an expansion in powers of $1/E_\text{max}$. The effective Hamiltonian is non-local, with the non-locality controlled in an expansion in powers of $H_0/E_\text{max}$. The effective Hamiltonian is also non-Hermitian, and we discuss whether this is a necessary feature or an artifact of our definition. We apply our formalism to 2D $\lambda \phi^4$ theory, and compute the the leading $1/E_\text{max}^2$ corrections to the effective Hamiltonian. We show that these corrections non-trivially satisfy the crucial property of separation of scales. Numerical diagonalization of the effective Hamiltonian gives residual errors of order $1/E_\text{max}^3$, as expected by our power counting. We also present the power counting for 3D $\lambda \phi^4$ theory and perform calculations that demonstrate the separation of scales in this theory.
Cited by 4
Authors / Affiliations: mappings to Contributors and Organizations
See all Organizations.- 1 Timothy Cohen,
- 2 Kara Farnsworth,
- 3 Rachel Houtz,
- 4 Markus Luty
- 1 University of Oregon [UO]
- 2 Case Western Reserve University [CWRU]
- 3 Durham University
- 4 University of California, Davis [UCD]