## Hamiltonian Truncation Effective Theory

Timothy Cohen, Kara Farnsworth, Rachel Houtz, Markus A. Luty

SciPost Phys. 13, 011 (2022) · published 4 August 2022

- doi: 10.21468/SciPostPhys.13.2.011
- Submissions/Reports

### Abstract

Hamiltonian truncation is a non-perturbative numerical method for calculating observables of a quantum field theory. The starting point for this method is to truncate the interacting Hamiltonian to a finite-dimensional space of states spanned by the eigenvectors of the free Hamiltonian $H_0$ with eigenvalues below some energy cutoff $E_\text{max}$. In this work, we show how to treat Hamiltonian truncation systematically using effective field theory methodology. We define the finite-dimensional effective Hamiltonian by integrating out the states above $E_\text{max}$. The effective Hamiltonian can be computed by matching a transition amplitude to the full theory, and gives corrections order by order as an expansion in powers of $1/E_\text{max}$. The effective Hamiltonian is non-local, with the non-locality controlled in an expansion in powers of $H_0/E_\text{max}$. The effective Hamiltonian is also non-Hermitian, and we discuss whether this is a necessary feature or an artifact of our definition. We apply our formalism to 2D $\lambda \phi^4$ theory, and compute the the leading $1/E_\text{max}^2$ corrections to the effective Hamiltonian. We show that these corrections non-trivially satisfy the crucial property of separation of scales. Numerical diagonalization of the effective Hamiltonian gives residual errors of order $1/E_\text{max}^3$, as expected by our power counting. We also present the power counting for 3D $\lambda \phi^4$ theory and perform calculations that demonstrate the separation of scales in this theory.

### Authors / Affiliations: mappings to Contributors and Organizations

See all Organizations.-
^{1}Timothy Cohen, -
^{2}Kara Farnsworth, -
^{3}Rachel Houtz, -
^{4}Markus Luty

^{1}University of Oregon [UO]^{2}Case Western Reserve University [CWRU]^{3}Durham University^{4}University of California, Davis [UCD]